C# Language Reference

owners:

File:

Last
saved:

Last
printed:

Version

Anders Hejlsberg and Scott
Wiltamuth

C# Language Reference.doc
6/12/2000

4/3/2002

0.17b

Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

*
EPUBCN @

Notice

This documentation is an early release of the final documentation, which may be changed substantially prior to final
commercial release, and isinformation of Microsoft Corporation.

This document is provided for informational purposes only and Microsoft makes no warranties, either express or
implied, in this document. Information in this document is subject to change without notice.

The entire risk of the use or the results of the use of this document remains with the user. Complying with all
applicable copyright lawsis the responsibility of the user.

Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into
aretrieval system, or transmitted in any formor by any means (el ectronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights
covering subject matter in this document. Except as expressly provided in any written license agreement from
Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or
other intellectual property.

Unpublished work. © 1999-2000 Microsoft Corporation. All rights reserved.

Microsoft, Windows, Visual Basic, and Visual C++ are either registered trademarks or trademarks of Microsoft
Corporation inthe U.SA. and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective owners.

Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Table of Contents

Table of Contents

I a1 0o [T A o o RSP ERRSPRP R 1
I 1= (o TR0 o TP 1
1.2 AUtOmMatiC MEMOIY MEBNB0EMIENL.eeeeiiiiiieeeeeeitiereeesaterreeessrreeeeessssareseeesssstreseesaasssreeeesaassreneessansens 2
G B Y TP U PP PP 4
I (=0 = 1T 0= o Y 0= PO TP UPPPPPRPPRPPPN 5
RS = Y 1Y 0= SO PPRPPPPRR 7
1.6 TYPE SYSIEM UNITICEIION ...ttt ettt et e et e e b e e s e e b e e s s enbeeenbeeebneen 9
S = (< 1 1= 1 C 10
A RS v 1 001 R TES R 00 o) 0o 10
1.7.2 Labded statements and goto StAEMENES.........uvviiiiiiiiiie et e e e e e s rb e e e e e ennees 10
1.7.3 Local declarations of constants and VariahlESoovvviiiiiiiieeeeeee e 11
1.7.4 EXPreSSION SLAEEMIENES.......eiieeiieeiieesiee et et e sttt sbe e s bt e beesaeeebeesse e st e e sbeean s enbeeebeeeneas 11
R I a L= YL I 7 1 0 1 | DU OO ERRROO 11
L1.7.6 The SWITCH SLEEEMENT ... et e e e et e e e e e e et a e e e e e e ebbbeeeesbbeeeesenres 12
L7.7 TheWhIlE SEAEMENT ...ttt e e et e e e e e et b e e e e e eabbbeeeeessbbreeesenareeeeeannres 12
L7.8 ThE OO SAEMENL.......eeii ettt et e et e e e e e e e e ebb e e e e e eabaeeeeabbaeae e beeeeseesbreeeeessnsens 13
L7 9 TRETON AEMENL ..ot e e e e e e e e e e s e e et b e e e e e e e e eeeaeeesssenanstabeeeenes 13
A (O I I S8 o] == 0o g T = 1< 1= | 13
1.7.11 Thebreak statement and the continue STAEMEN.........eveeiiiiiiii e 14
A R I S =Y AT g IS = (= 1= | 14
A R I 0 <8 o Y oI == 0 1< | PP 14
A R 2N o VA v (= 101 1| PO RRRRROPPP 14
1.7.15 Thechecked and UNCheCKed StalBMENTS ciieeee ettt e e e et et e e e e eaeereeeesnaesesessareserraeeereennns 14
1.7.16 ThE HOCK SLBIEIMENL. ... eeeeeeiiiieeeee ettt et e e e e e e e e e ettt eeeeeeeeeeeeeeeesesaassssssrarrereeaeeesaansrrees 14
RS =SSR 14
IR IR 1 1 (o 15
O V(= 1 =or =R 15
L1L DEEGAIES.....eeeeeitiee et ettt e ettt e ettt e e et et e e etb e e e e bae e e eabee e e aateeeabeeeeaabeeeabreeeeabeeeaatbeeeabreaeaareeenns 17
LAZ2 ENUMS. ... e s 18
LLA3 NBIMIESDBOES. ...t eereeeteeeeteeesree sheeessr et e sa bt e e ne e e sabe e e sare Sabe e e aae e e e ase e e e b et e e Ee e e aan £ anneeesnne e e anreesnneennreee e 18
I 070 1 1T OO P R OU R OPR PRI 19
LS 101010 £ 20
G Y= 1 21
I Y= 6 oo oo PO PPRTR 22
RSN] 10 1= 24
A (o= I AT (o (U 27
2.1 PhaseS Of TraNGBiON.......uueeeeiiiiie ettt e e et e e e e e e e e e e e eeeeeeenaabsaabaereeeeaaaeeeeeaannns 27
A v 001007 g 00 = ([0 o IO SRR 27
B = o0 0=~ oo [SR 28
2.3.1 Pre-processing deClaralions.........cceeeeiiiciiieieie e e i e s sttt e e e e e s s st e e e e e s s se s s snnb e e e e e e e s s snntbaeeeaeeesaeennnnens 28
A R I s Y oo 29
2.3.3 Pre-processing QONErOl INES........coiuieiei e e e e s et et e et e e stee s enre e e e e sanee e e s snteeesennnee sesnnnens 30
I < 13 1Y 31
2.3.5 Pre-proCessiNg I0ENMTTIEIS.......oieeeieieie ettt 31
2.3.6 Pre-proCESSING EXPIESSIONSeietrieiuteeeteeeaiteeasrsteeaseeesaseeaabeeeasseeaab e et e sabe e e beeesnbeeebeeeasbeeebaneesnneas 31
2.3.7 InteraCtion With WHIte SDA0E..........eeiuiiiii et ettt ettt ee s 32
2ALEXICE @NBIYSIS ..ottt ettt b et b e bt nnns 33
5 1o LU OSSP 33

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. i

C# LANGUAGE REFERENCE

WA 0] 01U | e g7 = (= £ RS 33
e B I [0 Tc (= 10 11 7= 0] £ TR SRSUSSSRRI 33
P N @010 = 01K T T PRSP PP PP 33
245 WHITE SDBCR. ...tttk ettt h ekt et b e e ea bt e e Rt e e ae e e Rt b et b e e e e e e r e nnn e nes 33
2.8 TOKENS ..ottt ettt et e ettt e e ettt e e eat e e e et te e e e b et e e entee e e R aeeeataeeeanteeeaanteeeanneeeeanneeens 33
2.5 Processing of Unicode CharaCter €SCapE SEQUENCES........cuvteureeteeaieeareesreesiseesieeesneesseeaneesneenneennes A
AT I o L= 0 1= £ USSP 34
2.5.2 KKBYWOITS. ...tttk ettt et e a e s as ekt e bt ekt e et e s b e et e e nhb e e an e e be e e be e e 36
TG N 1 (= = ORI 36
2.5.3. 1 BOOIEAN [ITEIAIS ..ottt e e et e e e e e et b a e e e e s s abr e e e e e s snraeeeeeennens 36
2.5.3.2 INTEOEN ITEIAIS ...ciieee ittt ettt e st b et b et 36
AR R 2 (== 11 = [SRS 37
2.5.3.4 CharaCter [ITEIAlSveie ettt sttt e et e et e e e st e e e sab e e e s stbeeesntaeesteeeennreeens 38
2.5.3.5 SHNG HEErAIS ..eeiiiie ettt s et e s e e et e e s b e e e st e e e aateeesateeesnbeeesnraeeanreeens 39
2.5.3.6 T NUIT TIEEIEL......eeeieeieeeie ettt ettt e et e et 40
2.5.4 Operators and PUNCIUBLONSciiurrireesiitireeeeessitreee e e s ssteeeeesssssreeeaessnaeeeeesssnssaeeeesansseeeeesaasenessnnes 40
G 7= 1S o oo oo £ 41
T = o = (o =SSP 11
G|V = 1 4o TSRS 43
3.2.1 NAMESPACE MEIMDEYS. ... ettt ettt e e et e e s b e e bt e b e e b e e et e beenneeennas 43
3.2.2 SHUCE MEMDEIS. ... it e e e et e e e e s s et e e e e e s sabee e e e s e abbaeeeesaabeeeeseanteeeeesnens 43
3.2.3 ENUMENation MEIMDEIS.......ooiiiieiieeeciie et et et ste e st e e st e e s ntae saeeeessaeesseeesnseeesseeeease sassaeeeassnneans 44
.24 ClaSSIMEIMIDETS. ... uutiiii e e ittt e e e ettt e e e s e e e e e s s ebb e e e e e e sbbeeeeeeaaabbaeeeeaabbbeeaeesassbeeaeeaaatbeeeesssbenaesansrns 44
I R N L4 10 = N 0101010 1< £ 44
3.2.6 ATTAY MEIMDEIS.ttt ettt e bt e b st et e ne e e teennnas 44
3.2.7 DElEGAE MEIMIDEIS ...ttt ettt sttt be e et e e b e et e st e e s st e e nae e e s be e e bt e e nbeenaeeennnas 44
.3 IMEIMDEN GCCESS. utiiiieeictiee ettt e e et e e e e et e e e e e e et beeeeeeaabbbeeeeesaabbaeeeesabbaeeeeeabbaeeeeennsres 44
3.3.1 Declared aCCSSIDIITYvee e nae e e 45
3.3.2 ACCESSIDIITY OMEINS........eiiiiiiiee ettt e e e e e et e e e st e e e et ae e e s saaeeaeassaaeeeseansteeeensnneeans 45
RS R (011= 0l (=6 = o0l S YRR UP T RRPRPIN 48
3.3.4 ACCESSIDIITY CONSITAINTSeii it e e s st e e e s s nab e e e e e s snreeeeeanees 48
3.4 Signatures and OVENTOAING.coiuriieie it e e s e e e s s e e e s e ae e e e e snrbe e e e e sereeeeesannes 49
G010 o= PP 50
13T I = 107> 1T 1o SR 52
35.L1 Hiding through NESLINGcccoiiiiiiei e e e e e e s s e e e s e ee e e e e s nrae e e e e e enrreeeesnnees 52
3.5.1.2 Hiding through INNEITANCE.cccoi i e e s s e e e e s snrae e e e s ennees 53
3.6 NaMESPACE AN LYPE NMAITIES.eeeeiitiieeeee s itreeeeessiteereesessrrr e e e s srteeeeeesasssaeeeeesasnraneeesaasseeeeeesanseeeessnnes 54
G N I ¥ VAo 0 3 = I = U= SR 55
N IV o PP PPPRPRRN 57
= TN R 1Y o= USSP PPR PP 57
4.1.1 DEFAUIT CONSIMUCIONS. ... ceutie ittt ettt ettt be et b et e e st e e s ae e e bt e e b e sneeenbeesnneenes 58
s 1 (0 (o 1Y/ = U EPPPP PR 59
I S 010 = 1Y - SRS 59
I g1 =0 = 1Y 0= PSSR 60
R I 0= 1] o o] 1 1Y o= PR SRSRR 61
G I g oY 0 = o 0 1Y S SRTSSPSSR 62
O I 0 =Y o ToTo Y I 1Y, o = TSR 63
S a0 1= = 0 X Y 0= SR 63
s 1= L= 0o Y 0= SRR 63

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Table of Contents

A R O = = 1Y/ o= TSR 64
A N 0 =X o o= o Y o= SRS 64
R B I =X 1 To 1Y/ oSSR 64
N L= g =0 R 1Y 0= TSRO P TP PP UPPPPN 64
R S AN 1= Y 1] - S 64
4.2.6 DEOOAIE LYPES. ...ttt ettt etttk h bRt E et R et b e e be e n e nn e 64
4.3 BOXING AN UNDOXITNIG ¢ttt ettt ekttt e st e s s s e e se e e eaabe e eaneeenn e e nbeennneesnneenes 65
4.3.1 BOXING COMVEISIONSceeuteteateeauteeasteessseessseassseasteeasseeaaseesaseesaseesaseesseeeaseeeabeeaabeeanseeanreenbeennneesnneenes 65
4.3.2 UNDOXING COMVEISIONS.uviiutietieaiieeteesies et eteesise st e sbeesaeeesbeeas £ sheeeaseesbeessseabeesseeennes eennbeeanneennes 66
T T = o] =< TSR 67
Y B = o [o 1= oo == E P ER 67
5.1.1 SHELC VAITBIDIES. ...ttt et st e et e e et e e neb e e e enreeennnee e 67
5.1.2 INStANCE VAITBDIES.ottt ettt e et e e eae e e s ae e e e enteeeenneaesneeeens 67
5.1.2.1 Instance VariablES IN ClASSES.oueeii ettt e et e e eee e e sneeeeenneee 67
5.1.2.2 INStanCe VariabIES IN SITUCES........oeeeeeiiiee e e e ettt e et e e e st e e e smeee e s sneeeeenneeeeanneeens 68
I G N g = VA= = 01T o1 SRS 68
5.1 4 VElUE PAIBIMELENSceitieeiie ettt ettt b et e e st e s bt e s ae e e s ke e e b e e e bt e e ate e st e e asreennneeneas 68
5.1.5 REFEIENCE PAIrAIMELEIS. ... eeeie e e i ittt ee e e e et e e e e e s sr e e e e e e s s st a b eeeeeaesssssnbeaeeeeessanssennrreeeeeessnnnens 68
5.1.6 OULPUL PAIBIMELEIS.eeeeiieeeeiteee it ee e sttt e et e e s be e e e s et e sk e e e st et e s asre e e s b et e e araeesanreeesanneessnneeesnneeens 68
B.L7 LOCA VAITEIDIES.eeie ettt ettt e et e et e e s nee e e snte e e e nsae e e snteeennteeennneeens 69
B.2 DEfAUIT VBIUES........eiee ettt ettt ettt e et e e e st e e e entae e e nnteeesnnaeeeanseeesnneeennnaeaans 69
5.3 DEFINITE @STGNMIENEeeetieetie ettt sttt be e e be e b e e bt esas e e e sb e e nbe e e be e enbeeenbeennneenneas 69
531 Initially asSigned VariahlES..........coiiiiiiiiie et 72
5.3.2 Initidly unassigned VariabIEScouiiiiiii s 72
A T o = (= (= (= 01 = OSSR 72
OO0)= g o PSPPI 73
6.1 IMPLiCIT CONVEISIONSccieieiec e e cctiie st e e e st e e e e s st e e e e s s eaar e e e e e s sneee e e e s e nnteeeeessantaeeeesannseeeeesennnens 73
L0 I I o U= Yoo 1Y o o SR 73
6.1.2 IMpPliCit NUMENIC CONVEISIONSoviiieiiiiiieieeeccitiee e e e s stiee e e e e s stree e e e s satre e e e s ssantaeeeeeeantteeeesaasreeeeesssees 73
6.1.3 IMplicCit eNUMEratioN CONVEISIONS.ccciiiuieeeeiiiieee e et eeeesteeeeestreeaesstee e e e st seesnntaeeessnneeeesenreeesennes 74
6.1.4 IMPliCit FEfErENCE CONVEISIONS.eiitie ittt ettt ettt e e e nneeennas 74
6.1.5 BOXING CONVEISIONSceiuiiiieeeeiitiieeeesesitteeeesssstteeeeesstteeeaessasareseaessasseneeessassseeeaesaanteneeessnseneessnsens 74
6.1.6 Implicit cONStaNt EXPreSSION CONMVEISIONSeeiurieireeireareesreesseessreesseessseeabeesbeesneessneesneesnneesnnas 74
6.1.7 User-defined impliCit CONVEISIONScocviiiiieiiieitie ettt 75
6.2 EXPIICIT COMVEISIONS ...ttt sttt ettt ettt be e et e b et e s st e e st e nbe e e bt e e e e enbeenaneennnas 75
6.2.1 EXPliCIt NUMENTIC CONVEISIONSeoiiieiiieiieeeiee ettt sttt b et e st nse e e be e e ne e beesnneesnnas 75
6.2.2 EXPliCit ENUMESation CONVEISIONS.cciuviiutietiesiieatiess seteeasteesseesieeebeesieeasnes eesbeesaneeseesaeesnneeneenne s 76
6.2.3 EXPIiCit FEfEreNCE COMVEISIONS.viiiitie ittt e sttt ettt sttt ettt be et e st e e nb e e naneeneeeennas 76
6.2.4 UNDOXING COMVEISIONS.uvtiuteeatiesiteasteestees essteesteesseeasseesbeesaseaase sheesaeeaaseeaseeasseabeesseean sebeeenseeennnas 77
6.2.5 User-defined eXpliCit CONVEISIONS.uiiiiiiieiieeiieet ettt b ne e 77
R RS = 00 = (o o'oY/ £ oo <SPPI 77
6.3.1 Standard iMpPlICIt CONVEISIONSccccuiiiiiiiee et ctee et e s e e e et e st e e e s e e st e e e ataeeesnreeesneeens 77
6.3.2 Standard eXPliCIt COMVEISIONSuvieiiiiiiieeeeictieee e e s sttt e e e s s st e e e e s s e e e e s ssaree e e e s santreeeeeaasrreeeeesnsees 78
6.4 USEr-0efiNE0 COMVEISIONSoeiiiiiieiiiee bt ettt sttt et e ettt e et e e e e sa b e e e et be e e sbae e e sabeeesbbeeesnbeeesnneaens 78
6.4.1 Permitted user-defined CONMVEISIONSoiiiiiiiiiiiieeiie et ee ettt s e e sbe e e sneea e 78
6.4.2 Evaluation of user-defined CONVEISIONS.........coiuiiiiiiie et ettt ettt et e e e e sbeee e saneee e 78
6.4.3 User-defined impliCit CONVEISIONScoiiiiiiiiiieeeiiiiee s srtiee e e s st e e e e s saber e e e s saneee e e e s snreeeeeeennnees 79
6.4.4 User-defined expliCit CONVEISIONS.c.coicuiiieiiiiieee it e e estiee e e s e e s see e e s st e e enntee e e s snnee e e s enrneeeeae s 80
A = === T LSS 81

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. \Y

C# LANGUAGE REFERENCE

7.1 EXPreSSion ClasSfiCaliONScoiciiiiie it ccie e et e e e s s e e e s st e e e s et e e e e e s nntae e e e e eanreeeeeennnees 81
7. 1.1 VaAUES Of EXPIESSIONS....uuieieeeiiiiiiiiieieeeseisirttteeeeeeesssatreeeeeesssastrssraareeaesssassseaseeeessanssmnnrseseeesssnssens 82
A o = (o = S SEPREPRR 82
7.2.1 Operator precedence and @SSOCIBHIVITYveerereirieiiee ettt 82
PV ® o= - (0] fe Y = 1 (0= o 1 o S 83
7.2.3 Unary operator overload reSOIULIONcoiuieiiieiiieiie ettt 84
7.2.4 Binary operator OVEerl0at rESOIULION.eeirieiiieiiei ettt 85
7.2.5 Candidate USer-defiNeO OPEILOIS.uiiieeriie ittt ettt et san e nee s 85
7.2.6 NUIMEXIC PIOMOLONS. ...cc.veeateeeateeeteeestee st e sieeesaeeebeeese e beesss e e sab e e aae e e beeaabeeenbeeasbeessneenbeesnneenneeannas 85
7.2.6.1 Unary NUMENIC PIrOMOLIONScouveieutieiiiesiteesiteesieeeiee et esbe et e et este e e b e et e st e e anneesnneenaneennas 86
7.2.6.2 BINAry NUMENTC PrOMOLIONSc.uvieurieieeeiieeteeasteesitee st e sieeeste e b et esabe e sb e e sse e e sbeeeneeenbeesnneesnnas 86
T.3MEMDES TOOKUP ...ttt b ettt et e st e bt e bt et e e s ab e e be e et e e nnnas 87
A R =T o {0 T OO P PP U PPPRPP 87
7.4 FUNCLION MEIMIDENS ...ttt ettt e rtee sttt sbe ettt he e e e bt e bt e sat e e b e e sae e et e e nbe sheeenbeeenbeeenbeeeneas 838
A N o 107 0 0 £ PRSPPI 0
7.4.2 OVErl0a0 FESOIULIONeiiiieie ettt ettt et st e e st e e sab e e e sbee e e sabee e s sbbe e s snbeeeanneeen 91
7.4.2.1 Applicable fFUNCHON MEMDESooiiiiiee e sr e e e s rrr e e e e enes 92
7.4.2.2 Better fUNCLON MEMDEY ... nnee e 92
PR RC R =T 1= g ole gV = £ o] o [P PRTURURRRRPIN 92
7.4.3 FUNCLION MEMDEN INVOCEION.cciiiiie it citiee ettt ettt e s sbt e e sbe e e s snbe e e snreaesaneeeens 93
7.4.3.1 INvoCcations 0N BOXEA INSLANCES.oiiiiee e e e 94
7.4.4 Virtua function MemBEr IOOKUD........eieeiiiieie e e e e e e s e e e e e s enreeeeens 94
7.4.5 Interface function MEMDEr IOOKUPcoiiiiiiiiie e e e e e e e nnees 94
7.5 PrIMErY EXPIESSIONS ...eeciiieiereeeeiitieeeeesstteeeeesssstteeeeesstteeeeessasnrereeessasseeeeessansseeeeesaasseneeesanseeneessnnsens 94
40 R = = OSSR 95
A 1] o 1= 7= 0 1= SRR 95
7.5.2.1 Invariant meaning iNBIOCKScoooiiiiiii e e e e e 96
7.5.3 ParentheSiZEO EXPrESSIONS. .. .ceeeiiciiieie e e e iiieee e e s st e e e e e strr e e e s e st e e e e s e st re e e e e s sssbaeeeessssneeeeeesanneeeessnnes 97
7.5.4 MBIMIDEN BCCESS... . ueieeiitiieeetieeeeteee e sttt e ettt e e steeeessteeeaatteeeanseeeeaseeeeaseeeeanseeesanseeesnsenesnseeesnsenesnsenens 97
7.5.4.1 |dentical SMple NAaMES aNd LYPE NAIMES........ccuuieiiriiiieeiee ettt sn e 98
7.5.5 INVOCALTION EXPIESSIONSveeveeeiee et etee st e esteeeste e e be e bt e ssb e e e sb e e saeeesbe e e beeeabeesabeeaaneensneennneennnas 99
7.5.5.1 MethOO INVOCALIONSooiiiiiiieei ettt e e e e st e e e sttt e e e st ae e e s snneeaeeanaaeeeseenseeeeensneeeans 99
7.5.5.2 DEl@JAE INVOCALIONS........eiuveeieeeite ettt et sie ettt sbe she e s st et e saeeeabe e beeanteen eenbneeenneas 100
7.5.6 ElOMENT G0CESSuuiiiieiiie i ctiee e ettt e ettt e st e e st e e e tte e e sttt e e ssbeeestteeeantaeesaneeeeanseeeeanseneeanteeeenneeneennes 100
7561 AITEY BCCESS......ueteeeeei ittt e e e sttt e e e ettt e e e ek et e e e e s s b et e e a4 aR b e et e e e s e ane e e e e e e sannee e e e e e e annbn e e e e e e e nr e e eeas 101
FA X A 10 oG - o ol S PSP EP 101
AN R RS T aTo HTaTe (] o PP PP OTRR 102
AT A N 0= ol = PRSPPI 102
T 5.8 BASE ACESS. ... ttttiiiee et e ettt ettt e e s sttt et e et e e e e e s e aa b e et e e e e e shbe e et et e aeeaaa b EEEeeeeaae e haabb bbbt b bt ettt e e reeeneeeeees 102
7.5.9 Podtfix increment and deCrement OPEIrAOrS...........cuueeeiieeeiiiee e siee e st e e stre e e seee e s srae e e sbe e e e enreee e e 103
T.5. 00 NMEW OPEILONee ettt ettt e e e e e e e e e e s s s s bbb et e e eeeaaeeeeeess s e s bbb bbb et e eeeeeaeeaeeessaaaanannbbbbbeerreeeees 104
7.5.10.1 ObjeCt OreatioN EXPIrESIIONSuuiiieiiiriereeeiaittrereeesatrreeeessistareeessasreereessaraereeesanssaeeeesaasreeeeess 104
7.5.10.2 Array Creation EXPrESSIONSuuureeeeiiurreeeeesiiuteereesssstereesssasstereessansteeeeesasssreeeeesansreneeessnsssnreeesss 105
7.5.10.3 Delegate Creation EXPIESSIONS.uuuuereeeriiierreeereaeeesssattereeeessaaastteereeeaaessaassssseeeeessanssnseseeees 106
AT Y/ o1 To T] o = o ORI 108
ST AT 2= To T] o < = o ST 109
7.5.13 checked and uNchecKed OPEIAIOISuuireeeiiiiie e e e esstiee e e e sstree e e e s s saree e e e e s sareee e e e e s ennnreeeeas 109
A g VA= T (== T = PSSP 111
A R 0= YA o T Yo o = = (o] S 111
7.6.2UNBIY MINUS OPENGEOLeeeeeeeiieitiiieeeeeesestinstrreeeeeeassasssseeeeesasaassersssseeesasssassssssseeesssasssmmssssssssseeses 111
RS E el o= Iql='e = (L0 g [a o= r= (] ENN SRS 112

Vi Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Table of Contents

7.6.4 Bitwise COMPIEMENT OPEIBION.......eiieiiciiiee e e ictiee e e e s st e e e e s st e e e e e sneee e e e s st re e e e s ennnaaeeeeesnnraaneeeeeeas 112
7.6.5 INAIrECHION OPEIGLON vveeeeeeeiiee e e e ettt et e e e st e e e e e s stb e e e e e s snbaeeeeessnteeeaessntaeeeeseastaneeeessanrreeeens 113
A XS0 0[S 0] 0 = - (0] FH SR 113
7.6.7 Prefix increment and deCremMent OPEIGIOIS...........ueiveeiieeiiee st et e et e e e esneeeneas 113
AR T O S = 0 (= o] PSP 113
7.7 ATTTNMELIC OPEIGIOIS ...ttt ettt e st esbb e e s bn e e be e e b e e nnne e nnn e e annes 114
7.7. 1 MUITIPICEION OPEIBEOTveeieeeiet ettt ettt ettt e e e sse e be e e e e b e e nsn e e e nnees 114
7.7.2 DIVISION OPEIBLO ...ttt et e ekttt et et e sae e sk e e sbe e e be e e bt e et e e sab e e as bt e nhe e e nbe e e e e e enbeeebneesnneas 115
7.7.3 REMAINGET OPEIGLONeeiiutee ettt ettt ettt et et e et e abe e e b e e e be e e be e eabe e enbeenabeessn e e nnneesnbeeanneas 116
PO N o i g oo = 7= (ol USSP OPR TR 117
7.7.5 SUBLIECHON OPEIELOTuvieieee ettt ettt be e b et be e et e b et eeebeeennas 119
FAC RS LIL100] 0 = = (6] £ T OOV RP PP 120
7.9 REIGHONE OPEIBIOIS. ... e eueeiitee ittt ettt ettt ettt hb e be e e be e e bt e et e e st e e s nb e e e nbeeenaneesnneas 121
7.9.1 INteger COMPAKISON OPEIAIOIS. .. .eeeiuveeeeetreeesteeeesteeesstreeeateeesasteeesaeeeaasbeeeaasseeesnsaeesanseeeasseesnnssees 122
7.9.2 Floating-point COMPariSON OPEIALOIS.........ueeicuereeiieeeistteeesitreeesteeesssreeesteeeessteeesnsseeesnseeeesnsseeeenes 122
7.9.3 DeCimal COMPAriSON OPEIBIOIS. .. .uueeieiierreeeeeeiitrteeeeesstrereeessnsbeereessasraeeeessnntaereessassaeeeeesanraneeeenas 123
7.9.4 BOOI€aN €QUAIILY OPEIELOIS.......cciieeiieeeeictiee e e e eeitre e e e e s st e e e s st e e e e s s s e e e e s snteer e e e ennsaneeeeeannsreeeeas 123
7.9.5 Enumeration COMPariSON OPEFEIOIS.uvueeeeiitiieeeeeistieeeeessnsteeeeessssreeeaessnssaereeeessansaeeeeessnnsseeees 124
7.9.6 Reference type eqUAlItY OPEIEIONS.ceeiiciieeeeiitieeeeit e e st e et e e e st e e e s st e e e s san e e e e e e e e e annrreeeeas 124
7.9.7 SIINQG €QUEIITY OPEIAIOIS. .. eeee et itiieie e e ittt e e e s eteee e e s ettt e e e e st e e e e sat b e e e e s s sssae e e e e s snnreeeaesannnrnneeeeens 125
7.9.8 Delegate eqUality OPEIELOIS........uuuiieeiiiciieeie e e e et s e s st e e e e s e st e e e e s e sse s s an e e e e e e e s sanran e e e e e e s saneeeeeas 125
SR I ¢ L= =Yoo = (] S 126
A L0 N oo o= Ia o < = (o] =TS 126
A O R g 1= o T= g oo [Tor= I ool = (o] =S 126
7.10.2 ENUMEXation 10QiCal OPEIAOrS.uuieeiiirieeeee s iittee e e s estter e e s e satte e e e s s st e e e e e s e nnnee e e e e s snnraneeessnnnnneeeess 127
A LORC 2Tol0 1= gl [l Lo a0 = r= 0] £ 127
7.11 Conditional [0giCal OPEIELOISceieiiiiieeee e e iciiie e e e ecrtrr e e e e st r e e e e st rae e e e s s ssbr e e e e e s snraeeeessnnnraneaeeeeeas 127
7.11.1 Boolean conditional 10giCal OPEIaLOrS..........ceciiiieeeeiiiieee e eeeesireee e estae e e e s srree e e e eee e e e e s snnrreeeeeeas 128
7.11.2 User-defined conditional 10giCal OPEIELOIS..........uviiiurieiiieeiie ettt 128
7.12 CONAITIONG] OPEIGION.........eeeutee ettt ettt ettt ettt b et bt e bt e et e e san e e s nn e e nnneennneeanneas 128
7.13 ASSIGNIMENT OPEIGLOIS.veeiueeeriteesite et etee et e bt e ssseessb e e s aseesbe e e se e e beeeabe e enb e e snt e e saneenbneennneenbneennas 129
7.13.1 SIMPIE @SSIGNIMIENT ...ttt ettt e e e bt s he e e bt e b e e e be e e b e e e e e e beeeneas 130
7.13.2 COMPOUNG @SSIGNIMIENT ...ttt ettt ettt essb e s e e ssb e e sbe e e be e e bt e et e e sase e s b e e nsneesnneeeanneas 132
7.13.3 EVENE BSSIONIMIENT ...eeeitieiie ettt e b e et et e et e e sab e e bt e e nbe e e ke e et e e e nnn e e nnneeanneas 132
A o == [0 PRSP OPR TR 132
7.15 CONSLANT EXPIESSIONSc.eveeeeeeieeesteeesteesateessbeesseeesteeebeeabeeaabeeasbeesabeesbeeeabeeenbeeeabeeanbeeanbeeenbeeeneas 132
7.16 BOOIEAN EXPIESSIONS.euveeiuteesuieessteesieeestee e tee et e eateessbeessteesseeeaseeebeeeabeeeabeeenbeesabeesabeesnteesnbeeanneas 133
S 21 1 11 0] £SO TP P PP PUTP PRI 135
8.1 End points and reaChalilityccuuirie i 135
S 302 =1 oo 1 ST STS 137
S S = (0.1 01 L £SO 137
G I g TC = 010 Y = = (1= | 137
o I o c = o R = 10 £ SRR 138
8.5 DEClaralioN SAEMENTS.eieiiirieiiieesetiee e sttt e e tee e st e e e st e e st e e e snteeeessteeesteeeesnseeesaneeeeanseeeeaneeeeennes 138
8.5.1 Local variable deCIaratioNSccueiieiiiiie et see et e e eree e e st e e et e e e nnnae e e e eees 139
(SRS IA Mooz I olala'S =g 0 (< ol = i (o PSSP 139
8.6 EXPIESSION SIAEIMENES.c.evieiee ettt ettt ettt he et b e et e eebe e e beeennes 140
8.7 SEECHION SLAEMENES......eeie e eeee ettt e et e e e st e e s st e e s ta e e e asteeeaseeeesntaeesanseeeeansrneeennnes 140
SN R N (N - 1= 001 0| PSSP 140
8.7.2 The SIWITCH SaEMIENT......eee et s e st e e et e e e ent e e e snaeeeantaeeeasreeeennes 141

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. Vii

C# LANGUAGE REFERENCE

viii

RS RN (S = 110 g I = < 011 01 T 145
R I I SN AT (SIRS = <0 01 1 145
R I I 0 TSX o (O = 1< 011 | SR 145
R R I 0T R (0 S £ (< 111 £ 146
RSN R N aToR HoY = T= o a1 = (= 1 01= | AP T TR 147
8.9 JUMP STBLEIMENIES ... ettt et s e e s n et e e s s re e e s s e e e e sne e e e anr e e e enre e eanes 148
R I I 4 SN 012 N = 1< 01 1 T 149
8.9.2 ThE COMINUE STAEEIMENE......ceiiiieieeeeettit e et e e e e e e e e e e eeeeeeeeeeeseeb bbb e s sssseesessasassssssesssasssbbbaaseesessnnes 149
SRS RS N o T=We o] Lol = 1= 111= 0 | AR SRR P 150
R I SN (s (NI = (< 0 < | TR 151
8.0.5 T thIOW SEAEEIMIENevvvvtteieeee et e e e e e e et e ettt e et e et e e s s s eeeeeeeeeeeeeessesesas s b b bbb e s sssessesesseesssnnsnns 151
O 0T (VS = = 0 1= 0| PP PPR TR 152
8.11 The checked and UNChECKEA SLALEMENTS.uuvuvrrrrrrrrrrrirssrssasssereesesresssesessrssessssssrses seesssssseesessessnes 14
L V2 I 0T (o s = = 111 | 155
18 B A= 0 01 0 T2 Lo RO TR PP 157
1o @0 0o = 1o 0T PSSR 157
9.2 NaMEIPACE JECIAIALIONS ...ttt ettt ettt sbe b e et e bt e s se e e b e e s be e ssne e eennneeennees 157
Lo G U g To o [=t 1Y=-= 158
0.3 1 USING Ali8S AIMECHIVES. ...tttk b ettt e e nne e b e neas 159
9.3.2 USiNG NAMESPACE TITECLIVES.eeeieieitieiee ettt sttt ettt ettt £ttt e e e st e s neee s 161
0.4 NAIMESPECE MEIMIDEIS ...ttt ettt ettt e sttt e e be e e be e e bt e eab e e sab e e b bt e sae e e ke e e be e e nneeennbeeanneas 163
O.5 TYPE UECIAIEIIONS. ...ttt ettt et e et e et et e e san e e sn e e nan e e nbneennas 163
J0. G aSSES. ..o e —————————————— 165
IO O F Sy o (=w == 10 165
O I =SSy 110 [= £ 165
O I O I N 0 1 = o T = - 165
O S == o Mot =SS N 166
10.1.2 Class hase SPECITICALIONccuveeriee e et e e e st e e e s e rnr e e e e e s sarre e e e e e snrrneeeeeas 166
O N N S TS Y o B s S 167
10.1.2.2 Interface iMPIEMENTALIONSccooiiiiiieee e e s s e e e e srree e e e s e ae e e e e e s nrreeee e e e s 168
L0 @ == o o |V SR 168
O O S 1.4= 1 1] 0= £ 168
K2 N 1 0111 7= (o T 169
O N 0 (SN 4 <YV 1010 o [1= 170
O X0 s oY 111600) L= £ 170
10.2.4 CONSHIUEIE TY[IES. ...ttt retee sttt ettt ettt sit et st bt e be e et e e b e e sab e e s ee e e s be e e ebeeenbeeenneennbeeennneans 170
10.2.5 StatiC aN0 INSLANCE MEIMIDEIS.......evveeitirieeee e e e et e e e e et e e ettt ittt et eee st rassaeseseesseaassssereeessrsbararanses 170
L GBI [= S =0 I 1Y o= SRS 171
O R 0 1 = | YT 171
L0 1 T [LT RPTPTRT 173
10.4.1 Static and INSANCE FIEIOS.coeei i e e e e r e e e e e e e eeeeeeeas 174
10.4.2 REAONIY FIEIASeeeeie e e e et e et e et e e e te e e aae s eenta e e e s aaraeeeeannes 174
10.4.2.1 Using static readonly fields for CONSLaNtS...........ccuvvvirieeiiiiiiieeree e 174
10.4.2.2 Versioning of constants and static readonly fieldS..........oocvveeveeiiiieii e, 175
IO el = T (o T L (K= T2 (] IR 175
O Y A e T o [N [T F= 1= £ T 176
O RN N S v (Tl (= [o T 1 (F= <= (o L T 177
10.4.4.2 InstanCe field iNItTAlIZAHONccevvvririieee e e e e e e e e e e e e s e e e e e e e eas bbb es 177
O SR1Y 1.1 o o 177

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Table of Contents

O AV = g0 o 0 = 1= = 178
LT I Y B U Y o = 1 4 (= £ S 179
10.5.1.2 REFEIENCE PAIraAIMELEIS ... cttveeeeeeiciiieee e e s ciee e e e s s stter e e e s saatre e e e e s sseaeeeeesastbeeeeessasnreeeeessnnnranneeeens 179
10.5.1.3 OULPUL PAIBIMELENS.eeeeiereeeearreeeestrereeessntre e e s saseeeesasreeeesanesne e e e sanree e e s anbe e e e snreeessnannneeeesaannes 180
10.5. 1.4 ParamsS ParaMELErS.ccoiieee st eee e e e s s e e e s e s e e s s annrnnnrnn e 181
10.5.2 Static and iNStANCE MELNOMScoieiiiiiiiec e s et e e e s et e e e e e s arreeeaeeeeas 182
10.5.3 Virtual MEINOOS........ceeiiiiiiie e e e e e e e e et e e e e s ar e e e e s s tae e e e e e eeaeeessnnntanneeeeas 183
10.5.4 OVETIAE MEINOUSuviiie et e e e et e e e et e e e e s e et ba e e e e s s saabeeeeeeessnareeeeaas 185
10.5.5 ADSIraCt MEINOOS.........ueeiiiiiiieie e e e e s e e e s et e e e e s s et rae e e e s esabaaeeeaessenanaraeeeeas 186
10.5.6 EXternal MENOOS..........eoiiiiiiiiiie ettt e e s et e e s et e e e e s et b e e e e e e e e e nanbreeeeeas 187
LT a0 [oo o | RS S 188
10.5.8 MethOd OVETOAOING ...ttt e et s eebneeens 188
Ol (070 1 1T= PSSO RT PR OPROPRROPI 188
LGRS (o o 0] 1= £ (L=< PP 189
J0.6.2 ACCESSOIS. ...ttt tueteeee e ettt e e e et e e sttt e e e sa b et e e ek b e e e e aabe £ e as b et e e e e b e et e e e R R R e e e e e RE £e e e e aannrn e e e e e e e e nnrreeeeas 189
10.6.3 Virtua, override, and aDSIratt @0CESSOIScciiuriieiieiee it ettt e ettt ettt st et e e sebee e e 194
FO.7 EVENES. ..ttt ettt ettt ettt es 4o e s bt e e h bt e ek et e e b et e e bt e e e e e be e e eabe e e aab e e e nreeebee renes 196
L0 100 (S (< = PP PRRPP 199
10.8.1 INdeXer OVENIOBING........uveeieeiiiiieie et e e e e e e e e e s s e e e s e s e e e e e s snntaae e e e e e nnreeeeas 202
LR @ o= = (] £ PP EPPEPRPRP 202
O B RO 0= YA o < = 0 TR 203
LR YT Ao o= = (0] = P 203
10.9.3 CONVEISION OPEIBIOIS.cuuveeeeeiureeeeiiterees srereesateeeessastereesasteees sreeessssssesessnsseseesanssnsessssssnnsseesens 204
10.20 INSLANCE CONSITUCTONS. ... te ettt e e e ettt e e e e e e e bbb e e e e e e e e asab b b be e et e e e s eaanbbe e e e e e e e s sansbannsbneeeeeeaaens 205
10.10.1 CoNSIUCKOr INITIAIIZENS.c eeeee ettt e et e et e e e e e e e eeee e e smteeeesneeeeaneeeeeannee 206
10.10.2 Instance variabl@ INItTIaliZErS..........ooeiiie e 206
10.10.3 CONSLIUCLON EXECULION. ... tieeeeeieeeteeaeeteeeeaueeeesueeaesnteeeeasteeeaseeeeanneeesasteeesaseeeeaseeesanseeeesannes 207
10.10.4 DEfAUIt CONSIIUCTOISceeuteeeeteeeteeeeeeee e eeeteeesteeeseteeesteeeensees eeeeneeesnneeeanseeeaneeeeanee snneeeesannes 208
10.10.5 Private CONSITUCLOIS.uveieeeiiieeeeectiee e ctee e e s ette e e e s ettee e e s sbte e e sreeeeesasreeeseastaeeesasreeas srrrrnnneeaeens 209
10.10.6 Optional CONSIIUCIOr PAIAIMELENS.eiieeeiieeitee sttt ertee et eb e e e s et esee e sseeesnseesneesneeennneens 209
L0, 1L DESITUCIOIS ...ttttteeeeeeeeee e et e e e e e e ettt e e e e e e e eee e e e e s s s e ettt baeeeeeeeeaaaaaeesssaaasssesbsannseeeeeeeeaaeaaaaaaaaaaaaees 209
10.12 SEALIC CONSITUCIONS. ... tveeeeeeectiteeeeeseitttee e e e s etteeeeesesatreeeeessatreeeeeesseaeeeasaassbeeeaessasnreneeaeessssnrseneens 210
10.12.1 Class |oading and iNitialiZaHON.cooueeiieiieeieeie e et e e 212
S o PSSR 213
S o 0 (= = o] L PRSP 213
0 0 S o 1 o = £ 213
2 1 11 =0T R 213
G 3 o A 07 YR 213
S 1o B 1= 001 o= =SS 213
GRS 1 o A= 0 o] =SS 213
R R BT vz 07z S SN 1= 0 1= 1Y 0SSP 213
HNIRCHZA DL = o7z = =] o100 K== o 1 1Y o= P 215
N g YT PP 217
F2.0 ATTAY LY IBS ..ttttteteieeeeeeeeeeeeeeeeeeereeteeeeeeeeeeeeeeeeeetteeattet e s e e ee e e e ea e e ettt eeeataaaaeaaeeaaattetttaatataaaaaaeaaeeeeeenens 217
I R I 0o Vg WYY ol = AV 1Y/ 0= SRR 218
A N = Yo = 1o o SR 218
12.3 Array ElEMENt GCCESSutiiiie e i it e e s et e e e s s r e e s st e e e e s et e e e e e aast e e e e e s atbeeeeeesassaneeeeeeannrreeeeas 218
N = Y 111= 0 0= T 218
12.5 ATTY COVAIBICE. ... eveeeeeee e e e eeieee e et e et e e et st ae e e e e e e s saa bt eesreeeeessaassbaeeeeaeesaansaeeneseeeeeaeeeaannnnanneeeens 218

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. iX

C# LANGUAGE REFERENCE

A S AN g = YT LU= 1= £ PSP 219
T 01 0= = (ol TR 221
13.1 INtErfaCe ECIAIALIONSvvviieeiiciteee ettt ettt e e et e e e et e e e e s sbbr e e e e s s eabbeeeeessesbbaeeeeeesasbeeeeas 221
T O T) = g = o=l 1210 0) (= £ OO RERRR PO 221
13,02 BaASE INEEITACES ... cttteeeee ettt et e e e e et st e e e e e s e e tb b e e e e e e e e e e e bbb r e e st e e e eaeeeannrrrareeaens 221
GG B 1 01 = g = o/ o o o |V PSSR 222
132 INtEfaCE MEIMDENS.......ooe et e e e e e e e e e r e e e e e e e e e aeeaaaaeaaaeaaeeeeas 222
13.2.1 INterfaCe MENOUS.cooii et e e e e e e e e e e e e e e e 223
G [1= =] 0] 1= 1 (- 223
L1323 INtEITACE EVENESt et e e e e e e e e e e e et rae eeeeeeeaeaeaeaaeaaeaens 224
R T (= g = v s 1100 (oS £ PSRRI 224
13.2.5 INtEIfaCe MEMDEN BCCESS.......ce et e e e e e e e e e e e e e ettt r e e e e e eaeaaeeeeens 224
13.3 Fully qualified interface MembEr NAMES...........oovi i e 226
134 Interface IMPIEMENELIONS. ... e e s e r e e e s e rarr e e e e e e s nrrneeeeeas 226
13.4.1 Explicit interface member implemEntationS............cooiiiree i e e e s rrrreee e e e 227
G g = g =" =] 0= o] 1 0 [PPSR 229
13.4.3 Interface implementation INNEMTANCE.cuui i 231
13.4.4 Interface re-implEMENTAIONcoc i e e et r e e e e snrre e e e e e e as 233
13.4.5 Abstract Classes and INtEITACES..........ccccieeeeeeeee et e e e e e e e e ee e 234
11 T TSRS 237
g a0 o = = L0 237
010 (0 0 1 0= 110 £ 238
14.3 ENUM VAUES 8NA OPEFELIONS.eeeeeeeiieeiiiieie e e e sssissteee e e e e s s satreeee e e e e s sssssnnsteeesaeseasnnnsnneeaeeeasaneeeeeas 240
I T =0T | =S 241
15.1 Delegate AECIArationScvuveiiieeeiciie et eee sttt e s e e e st ee e st e e e st e e e enteeesnseeesnnaeeeanteeeennreeeennes 241
15.1.1 DElEQale MOUITIEIS ...ccueeieeee ettt e et se e be e e be e e nnneennne e 241
G o= o] {0 PSSO RT PR TOPRTOPRROPI 243
N 1 101U 1 (=R 245
AN 1] o0 (Y = S =R 245
17.1.1 TheAttributeUsage atribULEccuiiiiiii e 245
17.1.2 Positiona and NamMEd ParaMELENS..........ceiiueee i i e s cee s ste e et e e st e e e s e e e atre e e s anraeeeennes 246
17.1.3 AttrDULE ParaMELEr TYDES. ...ccieeeiie ettt ettt ettt et b e et e s be e nbeennneenanee s 247
17.2 AttriDULE SPECITICEIIONueieiiiiiee ettt s e e st e e e st e e e ette e e e s e annaeeeeeennees 247
17.3 ARNDULE INSLBNCESevveiiee e e et e e e s et e e e s e eabbae e e e e eabbaeeeeeeeenabareeeeeas 249
17.3.1 Compilation Of @ atriULEccoieiiiiee e 249
17.3.2 Run-timeretrieval of an attribute INSLANCE.cceeviiiiiii e 249
17. 4 RESEIVEL GITDULES.......ooei ettt e e e e e e e e e e e e ettt e e e e e e e e eaaaeaeaaaaaaaeeeas 250
1741 TheAttributeUsage atribUIE ... 250
17.4.2 TheConditional @IOULEeuuuiviieei e s 250
17.43 TheObSOBETe @IULE ..ot e e e e e e e eaarree e s 252
G = = T a1 o S 255
e L a1 1= oo Lo [T 257
JO. L UNSEIE COUE....cceee ettt ettt e e e e e e et e e e e e e e e et e e e e e e e e e eaet seeeeeeeeeeeaaaaaaaaaaaaaaeeens 257
RS o]] = g Y 0= 257
(0 R 1 (= e o1 =T o |12 259

X Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Table of Contents

B2 N 1] o 1= SRS 259
20.1.1 The COMIMPOrt @triBULEcooiiiei e e 259
20.1.2 TheCOMSourcelnterfaces @tribULEcooviiiiiiiiiieeccceeeee e 259
20.13 The COMVISThI LIty AtrDULE ... e e s 259
20.1.4TheDISPIA @IOULE ... e e e e e e e e e e e ee e 260
20.1.5 TheDIEIMPOrt @trDULEoeeiiiee e e e e e e rir e e 260
20.1.6 TheGlobalObJeCt AtlIDULEcccciiiiiiiie e e e e e s e e e e s s nnreeeaeas 261
20.1.7 TheGUIA @ITOULEeeeieiie et e et e e s st e e e st e e e enteeesseeeeanneeeeennes 261
20.1.8 TheHasDefaultInterface atribULEcoooiiiiiiiii e 261
20.1.9 The ImportedFromCOM @tIDULEceiiviee et e e e e sree e enee e e 261
20.1.10The In and OUL @MDULEScccvviie et e e tre e e st e e e nnae e e ennneees 261
20.1.11 The InterfaceType arDULE...........cccueiiiiee e e e 262
20.1.12 The 1sCOMRegisterFunction atribULecccviiiiie i 262
20.1.13 The Marshal @triDULE............ccoiiuiie e e e et e e saee e e anbe e e srbe e e e ennes 262
20.1.14The Name GITDULE........cccveiei et e et e e e et e e e sat e e snnaeeeantaeeeanreeeenes 263
20.1.15 The NoIDispatch atribDULE.............cooieee e 263
20.1.16 The NonSerialized atriDULE.............ccevi i e e 263
20.1.17 The Predeclared atriDULE.............ccviiii i e 263
20.1.18 The ReturnsHRESUIT AtMDULE..........cooiiiiiiiie e 264
20.1.19The Serializable atriDULE...........cccciiii i 264
20.1.20 The StructLayout atriDULE..............ooiiiiie e 264
20.1.21 The StructOFFSet @IDULE..........ooiiie et 265
20.1.22 The TypeLibFunc @tribDULE...........coooieeeeee e 265
20.1.23The TypeLibType @triDULE...........oooieeeeee e 265
20.1.24 The TypeLibVar @llDULE...........cccoiiiiiiieieeee e e e et e e e e e e e e e e 265
OIS o) oo (] 010 1= 11 1 265
P L = = o= SR 267

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. Xi

Chapter

1. Introduction

C# isasimple, modern, object oriented, and type-safe programming language derived from C and C++. C#
(pronounced “C sharp”) is firmly planted in the C and C++ family tree of languages, and will immediately
be familiar to C and C++ programmers. C# aims to combine the high productivity of Visua Basic and the
raw power of C++,

C# is provided as a part of Microsoft Visual Studio 7.0. In addition to C#, Visua Studio supports Visual
Basic, Visua C++, and the scripting languages VBScript and JScript. All of these languages provide access

to the Next Generation Windows Services (NWGS) platform, which includes a common execution engine
and arich classlibrary. The .NET software development kit defines a"Common Language Subset" (CLS),
asort of lingua francathat ensures seamless interoperability between CL S-compliant languages and class
libraries. For C# developers, this means that even though C# is a new language, it has complete access to
the same rich class libraries that are used by seasoned tools such as Visua Basic and Visua C++. C# itsdf
does not include aclass library.

The rest of this chapter describes the essentia features of the language. While later chapters describe rules
and exceptions in a detail-oriented and sometimes mathematical manner, this chapter strives for clarity and
brevity at the expense of completeness. The intent isto provide the reader with an introduction to the
language that will facilitate the writing of early programs and the reading of later chapters.

1.1 Hello, world
The canonica “Hello, world” program can be written in C# as follows:
using System;
class Hello
static void Main(Q) {
} Console.WriteLine("'Hello, world™);
}

The default file extension for C# programsis . cs, asin hello.cs. Such aprogram can be compiled with
the command line directive

csc hello.cs
which produces an executable program named hel lo.exe. The output of the program is.

Hello, world
Close examination of this program is illuminating:

Theusing System; directive references a namespace caled System that is provided by the NET
runtime. This namespace contains the Console class referred to in the Main method. Namespaces
provide a hierarchical means of organizing the elements of aclasslibrary. A “using” directive enables
unqualified use of the members of a namespace. The “Hello, world” program uses
Console.WriteLine asashorthand for System.Console.WriteLine. What do these identifiers
denote? System isanamespace, Console isaclassdefined in that namespace, and WriteLine isa
static method defined on that class.

The Main function is a static member of the class Hel 1o. Functions and variables are not supported at
the globd level; such elements are aways contained within type declarations (e.g., class and struct
declarations).

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 1

C# LANGUAGE REFERENCE

The “Héllo, world” output is produced through the use of a class library. C# does not itself provide a
classlibrary. Instead, C# uses a common class library that is also used by other languages suchas
Visuad Basic and Visua C++.

For C and C++ developers, it is interesting to note a few things that do not appesar in the “Hello, world”
program.
The program does not use either “:-" or “->" operators. The “: :” isnot an operator in C# at al, and

the “~>" operator is used in only asmall fraction of C# programs. C# programsuse “.” as a separator
in compound names such as Console._WriteLine.

The program does not contain forward declarations. Forward declarations are never needed in C#
programs, as declaration order is not significant.

The program does not use #include to import program text. Dependencies between programs are

handled symbalically rather than with program text. This system eliminates barriers between programs
written in different languages. For example, the Console class could be written in C# or in some other

language.

1.2 Automatic memory management

Manual memory management requires developers to manage the alocation and de-allocation of blocks of
memory. Manua memory management is both time consuming and difficult. C# provides automatic
memory management so that developers are freed from this burdensome task. In the vast majority of cases,
this automatic memory management increases code quality and enhances developer productivity without
negatively impacting either expressiveness or performance.

The example

using System;
public class Stack

{

private Node first = null;

public bool Empty {
get {
return (first == null);

}
public object Pop() {
it (first == null)
throw new Exception("Can"t Pop from an empty Stack.");
else {
object temp = Ffirst.Value;
first = Tirst_Next;

return temp;

}
}

public void Push(object 0) {
Ffirst = new Node(o, first);

b

class Node

public Node Next;
public object Value;
public Node(object value): this(value, null) {}

2 Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

public Node(object value, Node next) {
Next = next;
Value = value;

}
}
shows a Stack class implemented as alinked list of Node instances. Node instances are created in the
Push method and are garbage cdlected when no longer needed. A Node instance becomes eligible for
garbage collection when it is no longer possible for any code to access it. For instance, when an item is
removed from the Stack, the associated Node instance becomes eligible for garbage collection.

The example

class Test

{
static void Main() {
Stack s = new Stack();
for (int i = 0; i < 10; i++)
s.Push(i);
whille (Is.Empty)
Console_WriteLine(s.Pop());

}
}

shows a test program that uses the Stack class. A Stack is created and initialized with 10 elements, and
then assigned the value null 1. Once the variable s is assigned null, the Stack and the associated 10 Node

instances become digible for garbage collection. The garbage collector is permitted to clean up
immediately, but is not required to do so.

For developers who are generally content with automatic memory management but sometimes need fine-
grained control or that extraiota of performance, C# provides the ability to write “unsafe” code. Such code
can dedl directly with pointer types, and fix objects to temporarily prevent the garbage collector from

moving them. This “unsafe” code featureisin fact “safe” feature from the perspective of both devel opers
and users. Unsafe code must be clearly marked in the code with the modifier unsafe, so devel opers can't

possibly use unsafe features accidentally, and the C# compiler and the execution engine work together to
ensure that unsafe code cannot masguerade as safe code.

The example

using System;
class Test

{
unsafe static void WriteLocations(byte[] arr) {
fixed (byte *p_arr = arr) {
byte *p_elem = p_arr;
for (int i = 0; i < arr.Length; i++) {
byte value = *p_elem;
string addr = int.Format((int) p_elem, "X");
Console.WriteLine("arr[{0}] at Ox{1} is {2}, i, addr, value);
p_elem++;
}
}
}
static void Main(Q {
byte[] arr = new byte[] {1, 2, 3, 4, 5};
WriteLocations(arr);
}
}

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 3

C# LANGUAGE REFERENCE

shows an unsafe method named WriteLocations that fixes an array instance and uses pointer
manipulation to iterate over the elements and write out the index, value, and location of each. One possible
output of the programis:

arr[0] at Ox8EO0360 is
arr[1l] at Ox8E0361 is
arr[2] at Ox8E0362 is
arr[3] at Ox8E0363 is
arr[4] at Ox8E0364 is

but of course the exact memory locations are subject to change.

A WNE

1.3 Types

C# supports two magjor kinds of types: value types and reference types. Vaue typesinclude smple types
(e.g., char, int, and float), enum types, and struct types. Reference types include class types, interface

types, delegate types, and array types.

Value types differ from reference types in that variables of the vaue types directly contain their data,
whereas variables of the reference types store references to objects. With reference types, it is possible for
two variables to reference the same object, and thus possible for operations on one variable to affect the
object referenced by the other variable. With value types, the variables each have their own copy of the data,
and it is not possible for operations on one to affect the other.

The example

using System;
class Classl

public int Value = O;

class Test

{
static void Main(Q {
int vall = 0;
int val2 = vall;
val2 = 123;
Classl refl = new Class1();
Classl ref2 = refl;
ref2.Value = 123;
Console._WriteLine("'Values: {0}, {1}, vall, val2);
3 Console.WriteLine(""Refs: {0}, {1}", refl_Value, ref2._.Value);
}

shows this difference. The output of the program is

Values: 0, 123
Refs: 123, 123

The assignment to the local variable val 1 does not impact the loca variable val 2 because both local

variables are of avaue type (int) and each loca variable of a value type has its own storage. In contrast,
the assignment ref2.value = 123; affectsthe object that both ref1 and ref2 reference.

Developers can define new value types through enum and struct declarations, and can define new reference
types viaclass, interface, and delegate declarations. The example

using System;

4 Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

public enum Color

Red, Blue, Green

}

public struct Point

{
public int x, y;

}

?ublic interface IBase
void FQ;

}

?ublic interface IDerived: IBase
void GQ);

}

public class A

{
protected void HQ {

Console.WriteLine("A_H™);

}

}

public class B: A, IDerived

public void FQ {
Console._WriteLine("B.F, implementation of IDerived.F");
}

public void GO {
Console_WriteLine("B.G, implementation of IDerived.G"™);
}

}
public delegate void EmptyDelegate();

shows an example or two for each kind of type declaration. Later sections describe type declarations in
greater detail.

1.4 Predefined types
C# provides a set of predefined types, most of which will be familiar to C and C++ developers.

The predefined reference types are object and string. The type object isthe ultimate base type of al
other types.

The predefined value types include signed and unsigned integral types, floating point types, and the types
bool, char, and decimal. The signed integral types are sbyte, short, int, and long; the unsigned
integral types are byte, ushort, uint, and ulong; and the floating point types are float and double.

The bool typeis used to represent boolean values. values that are either true or false. The inclusion of
bool makesit easier for developers to write self-documenting code, and aso helps diminate the al-too-
common C++ coding error in which a devebper mistakenly uses“=" when“==""should have been used. In
CH#, the example

int i =
F(i);
if E; = 0) // Bug: the test should be (i == 0)
GQO;
isinvalid because the expression i = 0 isof type int, and if statements require an expression of type
bool.

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 5

C# LANGUAGE REFERENCE

The char typeisused to represent Unicode characters. A variable of type char represents a single 16-bit
Unicode character.

The decimal typeis appropriate for calculations in which rounding errors are unacceptable. Common

examples include financial calculations such as tax computations and currency conversions. The decimal
type provides 28 significant digits.

The table below lists each of the predefined types, and provides examples of each.

Type Description Examples
obje The ultimate base type of al other types object o = new
ct Stack(Q);
stri String type; a string is a sequence of Unicode string s = "Hello";
ng characters
sbyt 8-bit signed integra type sbyte val = 12;
e
shor 16-bit signed integral type short val = 12;
t
int 32-hit signed integral type int val = 12;
long 64-bit signed integral long vall = 12;
J erd ype long val2 = 34L;
byte 8-bit unsigned integral type byte vall = 12;
byte val2 = 34U
usho 16-bit unsigned integra ushort vall = 12;
rt g egral type ushort val2 = 34U;
uint 32-bit unsigned integral type uint vall = 12;
9 e yp uint val2 = 34U;
ulon 64-bit unsigned integral type ulong vall = 12;
g ulong val2 = 34U;
ulong val3 = 56L;
ulong val4 = 78UL;
floa Single-precision floating point float value =
H ngle-pl g point type 1.99¢
doub Double-precision floating point type double vall = 1.23
le double val2 =
4._.56D;
bool Boolean type; abool vaueis either true or false bool value = true;
char Character type; achar vaueisaUnicode char value = "h";
character
deci Precise decimal type with 28 significant digits decimal value =
mal 1.23M;

Each of the predefined typesis shorthand for a system-provided type. For example, the keyword int is
shorthand for a struct named System. Int32. The two names can be used interchangeably, though it is
considered good style to use the keyword rather than the complete system type name.

Predefined value types such as int are treated speciadly in afew ways but are for the most part treated
exactly like other structs. The specia treatment that these types receive includes literal support and efficient
code generation. C# s operator overloading feature enables devel opers to define types that behave like the

6 Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

predefined value types. For instance, a Digit struct that supports the same mathematical operations as the
predefined integral types, and that conversion to and from these types.

using System;
struct Digit

class Test

{
static void TestInt() {
int a = 1;
int b = 2;
int c = a + b;
Console.WriteLine(c);
}
static void TestDigit() {
Digit a = (Digit) 1;
Digit b = (Digit) 2;
Digit ¢ = a + b;
Console.WriteLine(c);
}
static void Main(Q) {
Testint();
TestDigit();
}
}

1.5 Array types

Arraysin C# may be single-dimensional or multi-dimensional. Both “rectangular” and “jagged” arrays are
supported.

Single-dimensiona arrays are the most common type, so thisis agood starting point. The example
using System;
class Test

{
static void Main() {
int[] arr = new Int[5];
for (int i1 = 0; i1 < arr.Length; i++)
arr[i] =1 * i;
for (int i1 = 0; i < arr.Length; i++)
Console._WriteLine("arr[{0}] = {1}, i, arr[i]);
}
}

creates asingle-dimensional array of int values, initidizes the array elements, and then prints each of
them out. The program output is:

arr[0] =0
arr[1l] =1
arr[Z] =4
arr[3] =9
arr[4] = 16

The type int[] used in the previous exampleis an array type. Array types are written using a non-array-
type followed by one or more rank specifiers. The example

Copyright O Microsoft Corporation1999-2000. All Rights Reserved.

C# LANGUAGE REFERENCE

class Test

{
static void Main(Q) {
int[] ail; // single-dimensional array of int
int[,] a2; // 2-dimensional array of int
int[,,] a3; // 3-dimensional array of int
int j2; // “jagged" array: array of (array of int)
int[][][i 33; // array of (array of (array of int))
3
3

shows avariety of loca variable declarations that use array types with int as the eement type.

Arrays are reference types, and so the declaration of an array variable merely sets aside space for the
reference to the array. Array instances are actually created via array initializers and array creation
expressions. The example

class Test

static void Main(Q) {
int[] a1 = new int[] {1, 2, 3};
int[,] a2 = new int[,] {{1, 2, 3}, {4, 5, 6}};
int[,,] a3 = new int[10, 20, 30];

int[d[] 32 = new int[3][];

J2[0] = new int[] {1, 2, 3};

J2[1] = new int[] {2, 2, 3, 4, 5, :

j = new int[] {1, 2, 3, 4, 5, 6, 7, 8, 9};

shows a variety of array creation expressions. The variablesal, a2 and a3 denote rectangular arrays, and
the variable j2 denotes ajaggedarray. It should be no surprise that these terms are based on the shapes of
the arrays. Rectangular arrays always have a rectangular shape. Given the length of each dimension of the
array, its rectangular shapeis clear. For example, the length of a3’ s three dimensions are 10, 20, and 30
respectively, and it is easy to see that this array contains 10*20*30 elements.

In contragt, the variable j 2 denotes a“jagged” array, or an “array of arrays’ . Specificdly, j 2 denotesan
array of an array of int, or asingle-dimensiona array of type int[]. Each of these int[] variables can
be initialized individually, and this alows the array to take on a jagged shape. The example gives each of
the int[] arays adifferent length. Specificaly, the length of j2[0] is 3, thelength of j2[1] is6,and
the length of j2[2] is9.

It is important to note that the element type and number of dimensions are part of an array’ s type, but that
the length of each dimension is not part of the array’ s type. This split is made clear in the language syntax,

as the length of each dimengion is specified in the array creation expression rather than in the array type.
For instance the declaration

int[,,] a3 = new int[10, 20, 30];
has an array type of int[,,] and an array creation expression of new int[10, 20, 30].

For local variable and field declarations, a shorthand form is permitted so that it is not necessary to re-state
the array type. For instance, the example

int[] al = new int[] {1, 2, 3};
can be shortened to

int[] a1 = {1, 2, 3};

without any change in program semantics.

8 Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

It isimportant to note that the context in which an array initializer suchas {1, 2, 3} isused determines
the type of the array being initidized. The example

class Test

static void Main() {
short[] a = {1, 2, 3};
H b ={1, 2, 3};
:335{] c :{{l, 2, %};

}
}

shows that the same array initiaizer can be used for severa different array types. Because context is
required to determine the type of an array initializer, it is not possible to use an array initializer in an
expression context. The example

class Test

static void F(int[] arr) {}

static void Main(Q) {
F{1, 2, 3D);

}

isnot valid because the array initializer {1, 2, 3} isnot avalid expression. The example can be rewritten
to explicitly specify the type of array being created, asin

class Test

static void F(int[] arr) {}

static void Main(Q) {
F(new int[] {1, 2, 3});

}

1.6 Type system unification

C# provides a“unified type system” . All types— including value types— can be treated like objects.

Conceptually speaking, all types derive from object, ard so it is possible to call object methods on any
value, even values of “primitive’ types such as int. The example

using System;
class Test

static void Main(Q) {
Console.WriteLine(3.ToString());

}
calsthe object-defined ToString method on a constant value of type int.
The example

class Test

static void Main(Q) {
int i = 123;
object o = i; // boxing
int j = (int) o; // unboxing

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 9

C# LANGUAGE REFERENCE

10

ismoreinteresting. An int value can be converted to object and back again to int. This example shows
both boxingand unboxing. When avariable of avalue type needs to be converted to a reference type, an
object box is alocated to hold the value, and the value is copied into the box. Unboxingis just the opposite.

When an object box is cast back to its origind value type, the vaue is copied out of the box and into the
appropriate storage location.

This type system unification provides value types with the benefits of object-ness, and does so without
introducing unnecessary overhead. For programs that don't need int valuesto act like object, int values
are simply 32 bit values. For programs that need int’s to behave like abjects, this functionality is available
on-demand. This ability to treat value types as objects bridges the gap between value types and reference
types that existsin most languages. For example, the .NET class library includes a Hashtable class that
providesan Add method that takes aKey and avalue.

public class Hashtable

public void Add(object Key, object Value) {...}

}

Because C# has a unified type system, the users of theHashtable class can use keys and values of any
type, including value types.

1.7 Statements

C# borrows most of its statements directly from C and C++, though there are some noteworthy additions
and modifications.

1.7.1 Statement lists and blocks

A statement list consists of one or more statements written in sequence, and a block permits multiple
statements to be written in contexts where a single statement is expected. For instance, the example

using System;
class Test

static void Main() { // begin block 1
Console.WriteLine("Test.Main™);

{ 7/ begin block 2
Console.WriteLine("'Nested block™);
}

}
}

shows two blocks.

1.7.2 Labeled statements and goto statements

A labeled statement permits a statement to be prefixed by alabel, and goto statements can be used to
transfer control to alabeled statement.

The example
using System;
class Test

static void Main() {
goto H;

W: Console.WriteLine("world™);
return;

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

H: Console.Write("'Hello, ");
goto W;

}
}

is a convoluted version of the “Hello, world” program. The first statement transfers control to the statement

labeled H. The first part of the message is written and then the next statement transfers control to the
statement labeled W. The rest of the message is written, and the method returns.

1.7.3 Local declarations of constants and variables

A local constant declaration declares one or more local constants, and a local variable declaration declares

one or more local variables.
The example

class Test

static void Main() {
const int a = 1;
const int b = 2, ¢ = 3;
int d;
int e, f;
int g =4, h=5
d = 4;
e = 5;
f = 6;

}
}

shows a variety of loca constant and variable declarations.

1.7.4 Expression statements

An expression statement eval uates a given expression. The value computed by the expression, if any, is
discarded. Not al expressions are permitted as statements. In particular, expressions such as x + y and x
1 that have no side effects, but merely compute a value (which will be discarded), are not permitted as
statements

The example
using System;
class Test

static int FQ) {
Console_WriteLine("Test.F"");
return O;

}

static void Main() {
3 FO:;

}

shows an expression statement. The call to the function F made from Main congtitutes an expression
statement. The value that F returnsis smply discarded.

1.7.5 The if statement

An i statement selects a statement for execution based on the value of a boolean expression. An if
statement may optionaly include an else clause that executes if the boolean expression is false.

Copyright O Microsoft Corporation1999-2000. All Rights Reserved.

11

C# LANGUAGE REFERENCE

The example

using System;
class Test

static void Main(string[] args) {
if (args.Length == 0)
Console._WriteLine("'No arguments were provided™);
else
Console.WriteLine("'Arguments were provided™);

}
}

shows a program that uses an if statement to write out two different messages depending on whether
command- line arguments were provided or not.

1.7.6 The switch statement

A switch statement executes the statements that are associated with the value of a given expression, or a
default of statementsif no match exists.

The example
using System;
class Test

static void Main(string[] args) {
switch (args.Length) {
case 0O:
Console.WriteLine("'"No arguments were provided™);
break;

case 1:
Console._WriteLine(""One arguments was provided™);
break;

default:
Console._WriteLine(""{0} arguments were provided");
break;

}
}
}

switches on the number of arguments provided.

1.7.7 The while statement

A whi le statement conditionally executes a statement zero or more times — aslong as a boolean test is true.
using System;

class Test

{

static int Find(int value, int[] arr) {
int i = 0;
while (arr[i] !'= value) {

if (++1 > arr.Length)

3 throw new ArgumentException();
return i;

}

12 Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

static void Main(Q {
Console.WriteLine(Find(3, new int[] {5, 4, 3, 2, 1}));
¥
}
usesawhile statement to find the first occurrence of avauein an array.

1.7.8 The do statement
A do statement conditionally executes a statement one or more times.
The example
using System;
class Test
static void Main(Q) {
string s;
do {
s = Console.ReadLine();
%hile (s = "Exit");

}
}

reads from the console until the user types “Exit” and pressesthe enter key.

1.7.9 The for statement

A for statement evaluates a sequence of initialization expressions and then, while a condition istrue,
repestedly executes a statement and eval uates a sequence of iteration expressions.

The example
using System;
class Test

{ static void MainQ) {
i

for (int i = O;

< 10
Console.WriteLine(i

; I+4)
);

3
3

usesa for statement to write out the integer values 1 through 10.

1.7.10 The foreach statement
A foreach statement enumerates the el ements of a collection, executing a statement for each element of
the collection.
The example
using System;
using System.Collections;
class Test
static void WriteList(ArrayList list) {

foreach (object o in list)
Console._WriteLine(o);

}

static void Main(Q {
ArrayList list = new ArrayList();

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 13

C# LANGUAGE REFERENCE

for (int 1 = 0; 1 < 10; i++)
list.Add(i);

WriteList(list);
}
}

usesa foreach statement to iterate over the e ements of alist.

1.7.11 The break statement and the continue statement

A break statement exits the nearest enclosing switch, whi le, do, for, or foreach statement; a
continue starts anew iteration of the nearest enclosing whi le, do, for, or foreach statement.

1.7.12 The return statement

A return statement returns control to the caller of the member in which the return statement appears. A
return statement with no expression can be used only in a member that does not return avaue (eg., a
method that returns void). A return statement with an expression can only be used only in a function
member that returns an expression.

1.7.13 The throw statement
The throw statement throws an exception.

1.7.14 The try statement

The try statement provides a mechanism for catching exceptions that occur during execution of a block.
The try statement furthermore provides the ability to specify a block of code that is always executed when
control leavesthe try statement.

1.7.15 The checked and unchecked statements

The checked and unchecked statements are used to control the overflow checking context for arithmetic
operations and conversions involving integral types. The checked statement causes all expressions to be
evaluated in a checked context, and the unchecked statement causes al expressions to be evaluated in an
unchecked context.

1.7.16 The lock statement

The lock statement obtains the mutual-exclusion lock for a given object, executes a statement, and then
releases the lock.

1.8 Classes

Class declarations are used to define new reference types. C# supports single inheritance only, but a class
may implement multiple interfaces.

Class members can include constants, fields, methods, properties, indexers, events, operators, constructors,
destructors, and nested type declaration.

Each member of aclass has aform of accessibility. There are five forms of accessibility:
public membersare available to all code;
protected members are accessible only from derived classes,
internal members are accessible only from within the same assembly;

protected internal members are accessible only from derived classes within the same assembly;

14 Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

private members are accessible only from the class itsalf.

1.9 Structs

The ligt of similarities between classes and structsislong — structs can implement interfaces, and can have
the same kinds of members as classes. Structs differ from classes in several important ways, however:
structs are value types rather than reference types, and inheritance is not supported for structs. Struct vaues
are stored either “on the stack” or “in-ling’ . Careful programmers can enhance performance through
judicious use of structs.

For example, the use of a struct rather than a class for a Point can make alarge difference in the number
of alocations. The program below creates and initializes an array of 100 points. With Point implemented

as aclass, the program instantiates 101 separate objects — one for the array and one each for the 100

elements.
class Point
{
public int x, y;
public Point() {
X = 0;
y = 0;
b
public Point(int x, int y) {
this.x = X;
this.y = y;
3
3

class Test

static void Main(Q) {
Point[] points = new Point[100];

for (int i = 0; i1 < 100; i++)
points[i] = new Point(i, i*i);
}
If Point isingtead implemented as a struct, asin

struct Point

public int x, y;

public Point(int x, int y) {
this.x X
this.y = y;

}

}

then the test program instantiates just one object, for the array. The Point instances are dlocated in-line
within the array. Of course, this optimization can be mis-used. Using structs instead of classes can also
make your programs fatter and dower, as the overhead of passing a struct instance by vaueis dower than
passing an object instance by reference. There is no substitute for careful data structure and algorithm
design.

1.10 Interfaces

Interfaces are used to define a contract; a class or struct that implements the interface must adhere to this
contract. Interfaces can contain methods, properties, indexers, and events as members.

The example

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 15

C# LANGUAGE REFERENCE

interface lExample

{

string this[int index] { get; set; }
event EventHandler E;
void F(int value);

string P { get; set; }

public delegate void EventHandler(object sender, Event e);
shows an interface that contains an indexer, an event E, amethod F, and a property P.

Interfaces may employ multiple inheritance. In the example below, the interface 1ComboBox inherits from
both 1TextBox and IListBox.

interface IControl
{

void Paint(Q);
3
interface ITextBox: IControl
{

void SetText(string text);
3
interface IListBox: IControl
{

void Setltems(string[] items);
3

interface IComboBox: ITextBox, IListBox {}

Classes and structs can implement multiple interfaces. In the example below, the class EditBox derives
from the class Control and implements both 1Control and 1DataBound.

interface IDataBound

void Bind(Binder b);

public class EditBox: Control, IControl, IDataBound

public void Paint();
public void Bind(Binder b) {...}

In the example above, the Paint method from the 1Control interface and the Bind method from
IDataBound interface are implemented using public members on the Edi tBox class. C# provides an
aternative way of implementing these methods that allows the implementing class to avoid having these
members be public. Interface members can be implemented by using a qualified name. For example, the
EditBox class could instead be implemented by providing 1Control .Paint and 1DataBound.Bind
methods.

public class EditBox: IControl, IDataBound

void IControl.Paint();

void IDataBound.Bind(Binder b) {...}
}

Interface members implemented in thisway are called “explicit interface member implementations”
because each method explicitly designates the interface method being implemented.

16 Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

Explicit interface methods can only be called viathe interface. For example, the EditBox’s
implementation of the Paint method can be called only by casting to the 1Control interface.

class Test

static void Main(Q) {
EditBox editbox = new EditBox();
editbox.Paint(); // error: EditBox does not have a Paint method

I1Control control = editbox;
control .Paint(); // calls EditBox’s implementation of Paint

}
}

1.11 Delegates

Delegates enable scenarios that C++ and some other languages have addressed with function pointers.
Unlike function pointers, delegates are object-oriented, type-safe, and secure.

Delegates are reference types that derive from a common base class. System.Delegate. A delegate
instance encapsulates amethod —a callable entity. For instance methods, a callable entity consists of an
instance and a method on the instance. If you have a delegate instance and an appropriate set of arguments,
you can invoke the delegate with the arguments. Similarly, for static methods, a callable entity consists of
aclass and a gtatic method on the class.

An interesting and useful property of a delegate is that it does not know or care about the class of the object
that it references. Any object will do; al that mattersis that the method’ s signature matches the delegate’ s.
This makes delegates perfectly suited for "anonymous' invocation. This is a powerful capability.

There are three steps in defining and using delegates: declaration, instantiation, and invocation. Delegates
are declared using delegate declaration syntax. A delegate that takes no arguments and returns void can be
declared with

delegate void SimpleDelegate();

A delegate instance can be instantiated using the new keyword, and referencing either an instance or class
method that conforms to the signature specified by the delegate. Once a delegate has been instantiated, it
can be called using method call syntax. In the example

class Test

static void FQO {
System.Console.WriteLine(""Test.F");

static void Main(Q {
32?pleDelegate d = new SimpleDelegate(F);
}
}

asSimpleDelegate inganceis created and then immediately invoked.

Of course, there is not much point in instantiating a delegate for a method and then immediately caling via
the delegate, as it would be simpler to call the method directly. Delegates show their usefulness when their
anonymity is used. For example, we could define aMul tiCal I method that can call repeatedly cal a
SimpleDelegate.
void MultiCall(SimpleDelegate d, int count) {

for (int i = 0; 1 < count; i++)

dQ;
}
}

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 17

C# LANGUAGE REFERENCE

18

1.12 Enums

An enum type declaration defines a type name for arelated group of symbolic constants. Enums are
typicdly used when for “multiple choice’ scenarios, in which a runtime decision is made from a number of
options that are known a compile-time.

The example

enum Color {
Red,
Blue,
Green

class Shape

public void Fill(Color color) {

switch(color) {
case Color.Red:

break;
case Color.Blue:
B}éak;
case Color.Green:
B}éak;
default:
break;
}
}
}
shows a Color enum and a method that uses this enum. The signature of the Fi 11 method makes it clear
that the shape can be filled with one of the given colors.

The use of enumsis superior to the use of integer constants —as is common in languages without enums —
because the use of enums makes the code more readable and salf -documenting. The self-documenting

rature of the code also makes it possible for the devel opment tool to assist with code writing and other
“designer” activities. For example, the use of Color rather than int for a parameter type enables smart
code editors to suggest Color values.

1.13 Namespaces

C# programs are organized using namespaces. Namespaces are used both as an “interna” organization
system for a program, and as an “externa” organization system — away of presenting program elements
that are exposed to other programs.

Earlier, we presented a“Hello, world” program. We'll now rewrite this program in two pieces. a
Hel loMessage component that provides messages and a console application that displays messages.

First, we'll provide aHel 1oMessage classin a namespace. What should we call this namespace? By
convention, developers put al of their classes in a namespace that represents their company or organization.
WEe'll put our classin a namespace named Microsoft.CSharp. Introduction.

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

namespace Microsoft.CSharp.Introduction
public class HelloMessage

public string GetMessage() {
return "Hello, world";
}

}
}

Namespaces are hierarchica, and the nameMicrosoft.CSharp. Introduction isactualy shorthand
for defining a namespace named Microsoft that contains a namespace named CSharp that itself contains
anamespace hamed Introduction, asin:

namespace Microsoft

namespace CSharp

{

namespace Introduction

{----}

}

Next, we'll write a console gpplication that uses the He I loMessage class. We could just use the fully
qualified name for the class— Microsoft.CSharp. Introduction.Hel loMessage — but thisnameis
quite long and unwieldy. An easier way isto usea“using” directive, which makes it possible to use all of
the types in a namespace without qualification.

using Microsoft.CSharp. Introduction;
class Hello

static void Main() {
HelloMessage m = new HelloMessage();
System.Console._WriteLine(m.GetMessage());

}
}

Note that the two occurrences of He l loMessage are shorthand for
Microsoft.CSharp. Introduction.HelloMessage.

C# also enables the definition and use of aliases. Such diases can be useful in situation in which name
collisions occur between two libraries, or when a small number of types from amuch larger namespace are
being used. Our example can be rewritten using diases as:

using MessageSource = Microsoft.CSharp.Introduction._HelloMessage;
class Hello

static void Main() {
MessageSource m = new MessageSource();
System.Console._WriteLine(m.GetMessage());

}
}

1.14 Properties

A property is anamed attribute associated with an object or a class. Examples of properties include the
length of astring, the size of afont, the caption of awindow, the name of a customer, and so on. Properties
are anatural extension of fields — both are named members with associated types, and the syntax for
accessing fields and properties is the same. However, unlike fields, properties do not denote storage
locations. Instead, properties have accessors that specify the statements to execute in order to read or write

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 19

C# LANGUAGE REFERENCE

20

their values. Properties thus provide a mechanism for associating actions with the reading and writing of an
object’ s attributes, and they furthermore permit such attributes to be computed.

The success of rapid application development tools like Visual Basic can, to some extent, be attributed to
the inclusion of properties as afirst-class element. VB devel opers can think of a property as being field-like,
and this allows them to focus on their own application logic rather than on the details of a component they
happen to be using. On the face of it, this difference might not seem like a big deal, but modern component-
oriented programs tend to be chockfull of property reads and writes. Languages with method-like usage of
properties (e.g., o-Setvalue(o.Getvalue() + 1);) are clearly at adisadvantage compared to
languages that feature field-like usage of properties (e.g., o.Value++3;).

Properties are defined in C# using property declaration syntax. The first part of the syntax looks quite
similar to afield declaration. The second part includes a get accessor and/or a set accessor. In the example
below, the Button class defines aCaption property.

public class Button: Control

{
private string caption;
public string Caption {

get {
return caption;

}

set {
caption = value;
Repaint();

}
}

Properties that can be both read and written, like the Caption property, include both get and set accessors.
The get accessor is called when the property’ s valueis read; the set accessor is called when the property’s
value is written. In a set accessor; the new vaue for the property is given in an implicit value parameter.

Declaration of propertiesis relatively straightforward, but the true value of properties shows itself isin their
usage rather than in their declaration. The Caption property can read and written in the same way that
fields can beread and written:

Button b = new Button();

b.Caption = "ABC"; // set
string s = b.Caption; // get
b.Caption += "DEF; // get & set

1.15 Indexers

If propertiesin C# can be likened to “smart fields’ , then indexers can be likened to “smart arrays’ . Wherees
properties enable field-like access, indexers enable array-like access.

As an example, consider a ListBox control, which displays strings. This class wants to expose an array-
like data structure that exposesthe list of stringsit contains, but also wants to be able to automatically
update its contents when avalue is atered. These goals can be accomplished by providing an indexer. The
syntax for an indexer declaration is similar to that of aproperty declaration, with the main differences being
that indexers are nameless (the “name” used in the declaration is this, since this is being indexed) and that
additional indexing parameters are provided between square brackets.

public class ListBox: Control

private string[] items;

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

public string this[int index] {
get {
return items[index];

set {
items[index] = value;
Repaint();

}
}
As with properties, the convenience of indexersis best shown by looking at use rather than declaration. The
ListBox class can be used as follows:

ListBox listBox = ...;
listBox[0] = "hello";
Console._WriteLine(listBox[0]);

1.16 Events

Events permit a class to declare notifications for which clients can attach executable code in the form of
event handlers. Events are an important aspect of the design of classlibrariesin general, and of the system-
provided class library in particular. C# provides an integrated solution for events.

A class defines an event by providing an event declaration, which looks quite similar to afield or event
declaration but with an added event keyword. The type of this declaration must be a delegate type. In the
example below, the Button class defines aClick event of type EventHandler.

public delegate void EventHandler(object sender, Event e);

public class Button: Control

public event EventHandler Click;

public void Reset() {
Click = null;
}

}

Inside the Button class, the Click member can be corresponds exactly to a private field of type
EventHandler. However, outside the Button class, the ClIick member can only be used on the left hand
side of the+= and -= operators. Thisrestricts client code to adding or removing an event handler. In the
client code example below, the Form1 class addsButton1_Click asan event handler for Buttonl’s
Clickevent. Inthe Disconnect method, the event handler is removed.

using System;
public class Forml: Form

public Form1(Q {
// Add Buttonl Click as an event handler for Buttonl’s Click event
Buttonl.Click += new EventHandler(Buttonl_ _Click);

}
Button Buttonl = new Button();

void Buttonl_Click(object sender, Event e) {
Console._WriteLine("'Buttonl was clicked!);
b

public void Disconnect() {
Buttonl.Click -= new EventHandler(Buttonl_Click);
}

}

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 21

C# LANGUAGE REFERENCE

22

The Button class could be rewritten to use a property-like event declaration rather than afield-like event
declaration. This change has no effect on client code.

public class Button: Control

public event EventHandler Click {
get {...}
set {...}

public void Reset() {
Click = null;
}
}

1.17 Versioning
Versioning is an after-thought in most languages, but not in C#.

“Versoning” actudly has two different meanings. A new version of a component is “source compatible”
with a previous version if code that depends on the previous version can, when recompiled, work with the
new version. In contrast, for a“binary compatible” component, a program that depended on the old version
can, without recompilation, work with the new version.

Most languages do not support binary compatibility at all, and many do little to facilitate source
compatibility. In fact, some languages contain flaws that make it impossible, in generd, to evolve aclass
over time without breaking some client code.

As an example, consider the situation of a base class author who ships a class named Base. In thisfirst
version, Base contains no F method. A component named Deriived derivesfrom Base, and introduces an
F. ThisDerived class, along with the class Base that it depends on, is released to customers, who deploy
to numerous clients and servers.

// Author A
namespace A

class Base // version 1

}
}

// Author B
namespace B

class Derived: A.Base

public virtual void FQ
System.Console_WriteLine("'Derived.F");

}
}

So far, so good. But now the versioning trouble begins. The author of Base produces anew version, and
addsits own F method.

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

// Author A
namespace A

class Base // version 2

public virtual void FQ { // added in version 2
System.Console._WriteLine("'Base.F");

}
}
This new version of Base should be both source and binary compatible with the initia version. (If it
weren't possible to smply add a method then a base class could never evolve.)) Unfortunately, the new F in
Base makesthe meaning of Derived’s F isunclear. Did Derived mean to override Base’sF? This
seems unlikely, since when Der ived was compiled, Base did not even have an F!' Further, if Derived's
F does override Base’s F, then does Derived’s F adhere to the contract specified by Base? This seems
even more unlikely, sinceit is pretty darn difficult for Derived’sF to adhere to a contract that didn’t exist
when it was written. For example, the contract of Base’s F might require that overrides of it dways call the
base. Derived’sF could not possibly adhere to such a contract since it cannot call a method that does not
yet exis.

In practice, will name collisions of thiskind actually occur? Let’s consder the factors involved. Firg, it is
important to note that the authors are working completely independently — possibly in separate corporations
—s0 ho collaboration is possible. Second, there may be many derived classes. If there are more derived
classes, then name collisions are more likely to occur. Imagine that the base classis Form, and that al VB,
VC++ and C# developers are creating derived classes—that's alot of derived classes. Findly, name
collisions are more likely if the base classisin a specific domain, as authors of both a base class and its
derived classes are likely to choose names from this domain.

C# addresses this versioning problem by requiring developers to clearly state their intent. In the origina
code example, the code was clear, since Base did not even have an F. Clearly, Derived s F isintended as
anew method rather than an override of a base method, since no base method named F exists.

// Author A
namespace A

class Base

{
}

3
// Author B
namespace B
class Derived: A.Base

public virtual void FQO {
System.Console._WriteLine("'Derived.F");

}
}

If Base addsan F and ships a new version, then the intent of a binary version of Derived isstill clear —
Derived’sF issemantically unrelated, and should not be treated as an override.

However, when Derived is recompiled, the meaning is unclear —the author of Derived may intend its F
to overrideBase’s F, or to hideit. Since the intent is unclear, the C# compiler produces a warning, and by
default makes Derived’s F hide Base’'s F — duplicating the semantics for the case in which Derived is
not recompiled. This warning alerts Derived’s author to the presence of the F method in Base. If

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 23

C# LANGUAGE REFERENCE

24

Derived’ sF is semantically unrelated to Base’sF, then Derived’s author can expressthisintent — and, in
effect, turn off the warning — by using the new keyword in the declaration of F.

// Author A
namespace A

class Base // version 2

public virtual void FQ) { // added in version 2
System.Console._WriteLine("'Base.F");

}
}

// Author B
namespace B

class Derived: A.Base // version 2a: new

new public virtual void FQ)
System.Console._WriteLine("Derived.F");
b

}
}
On the other hand, Derived’s author might investigate further, and decide that Derived’s F should
override Base’'sF, and clearly specify thisintent through specification of the override keyword, as
shown below.

// Author A
namespace A

class Base // version 2

public virtual void FQQ { // added in version 2
System.Console._WriteLine("'Base.F");

}
}

// Author B
namespace B

class Derived: A.Base // version 2b: override

public override void FQO {
base.FQ);
System.Console._WriteLine("'Derived.F");

}
}

}

The author of Derived has one other option, and that is to change the name of F, thus completely avoiding
the name collision. Though this change would bresk source and binary compatibility for Derived, the
importance of this compatibility varies depending on the scenario. If Derived is not exposed to other
programs, then changing the name of F is likely a good idea, as it would improve the readability of the
program — there would no longer be any confusion about the meaning of F.

1.18 Attributes

C# isaprocedural language, but like all procedural languages it does have some declarative e ements. For
example, the accessibility of amethod in aclassis specified by decorating it public, protected,
internal,protected internal, or private. Through its support for attributes, C# generalizes this

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

capability, so that programmers can invent new kinds of declarative information, specify this declarative
information for various program entities, and retrieve this declarative information at run-time. Programs
specify this additional declarative information by defining and using attributes.

For instance, a framework might define aHe lpAttribute attribute that can be placed on program
elements such as classes and methods to provide a mapping from program elements to documentation for

them. The example

[AttributeUsage(AttributeTargets.All)]
public class HelpAttribute: System._Attribute

{
public HelpAttribute(string url) {
this.url = url;
¥

public string Topic = null;
private string url;

public string Url {
get { return url; }

}

defines an attribute class named He lpAttribute, or Help for short, that has one positional parameter
(string url) and one named argument (string Topic). Positional parameters are defined by the formal
parameters for public constructors of the attribute class;, named parameters are defined by public read-write
properties of the attribute class. The square brackets in the example indicate the use of an attributein
defining the Hellp attribute. In this casg, the AttributeUsage dattribute indicates that any program
element can be decorated with the Help attribute.

The example

[Help(C'http://www.mycompany.com/../Classl._htm')]
public class Classl

[Help('http://www._mycompany.com/../Classl._htm"™, Topic ="F")]
public void FOQ {}

}
shows several uses of the attribute.

Attribute information for a given program element can be retrieved at run-time by using the .NET runtime's
reflection support. The example

using System;
class Test

static void Main(Q) {

Type type = typeof(Classl);

object[] arr = type.GetCustomAttributes(typeof(HelpAttribute));

if (arr.Length ==

: Co?sole.WriteLine("CIassl has no Help attribute.™);

else
HelpAttribute ha = (HelpAttribute) arr[0];
Console._WriteLine("Url = {0}, Topic = {1}" ha.Url, ha.Topic);

}

}
}

checksto seeif Classi has aHelp attribute, and writes out the associated Topic and Url vauesif the
atribute is present.

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 25

Chapter

2. Lexical structure

2.1 Phases of translation

A C#program consists of one or more source files. A sourcefile is an ordered sequence of Unicode
characters. Source filestypicaly have a one-to-one correspondence with filesin afile system, but this
correspondence is not required by C#.

Conceptualy speaking, a program is compiled using four steps.

1 Pre-processing, atext-to-text trandation that enables conditional inclusion and exclusion of program
text.

2 Lexica analysis, which trandates a stream of input characters into a stream of tokens.
3 Syntactic andysis, which trandates the stream of tokens into executable code.

2.2 Grammar notation

Lexical and syntactic grammars for C# are interspersed throughout this specification. The lexical grammar
defines how characters can be combined to form tokens; the syntactic grammar defines how tokens can be
combined to form C# programs.

Grammar productions include non-terminal symbols and termina symbols. In grammar productions, non-
terminal symbols are shown in italic type, and terminal symbols are shown in afixedwidth font. Each
non-terminal is defined by a set of productions. The first line of a set of productions is the name of the non-
terminal, followed by a colon. Each successive indented line contains the right-hand side for a production
that has the non-terminal symbol as the |eft-hand side. The example:

nonsense:.
terminall
terminal2

defines the nonsense non-terminal as having two productions, one with terminal1 on the right-hand side
and one with terminal2 on the right-hand side.

Alternatives are normally listed on separate lines, though in cases where there are many alternatives, the
phrase “one of” precedes alist of the options. Thisis smply shorthand for listing each of the aternatives on
a separate line. The example:

|etter: oneof
A B C a b c

is shorthand for:

|etter: oneof
A

OT O O

A subscripted suffix “o,” , @sin identifieryy, is used as shorthand to indicate an optional symbol. The
example:

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 27

C# LANGUAGE REFERENCE

28

whole:
first-part second-part,, last-part

is shorthand for:

whole:
first-part last-part
first-part second-part last-part

2.3 Pre-processing
C# enables conditional inclusion and exclusion of code through pre-processing.

pp-unit:
PP-grouPopt

pp-group:
pp-group-part
pp-group pp-group-part
pp-group-part:
pp-tokens,: new-line
pp-declaration
pp-if-section
pp-control-line
pp-line-number

pp-tokens:
pp-token
pp-tokens pp-token

pp-token:
identifier
keyword
literal
operator -or -punctuator

new-line
The carriage return character (U+000D)
The line feed character (U+000A)
The carriage return character followed by aline feed character
The line separator character (U+2028)
The paragraph separator character (U+2029)

2.3.1 Pre-processing declarations

Names can be defined and undefined for use in pre-processing. A #define defines an identifier. A
#undef "undefines’ an identifier — if the identifier was defined earlier then it becomes undefined. If an
identifier is defined then it is semantically equivaent to true; if an identifier is undefined then it is
semantically equivalent to false.

pp-declaration:
#define pp-identifier
#undef pp-identifier

The example:

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

#define A
#undef B

class C
{
#if A

void FO {}
#else

void GO {}
#endif
#if B

void HO {}

#else

void 10 {}
#endif

}
becomes;

class C

Within a pp-unit, declarations must precede pp-token elements. In other words, #define and #undef must
precede any "rea code’ in thefile, or a compile-time error occurs. Thus, it is possible to intersperse #i f
and #define asin the example below:

#define A
#if A
#define B
#endif
namespace N

#if B
class Classl {}
#endif

}
The following example isillegal because a#define follows real code:

#define A
namespace N

#define B

#if B

class Classl {}
#endif

}

A #undef may "undefine” anamethat is not defined. The example below defines a name and then
undefines it twice; the second #unde T has no effect but is still legal.
#define A

#undef A
#undef A

2.3.2 #if, #elif, #else, #endif
A pp-if-section is used to conditionally include or exclude portions of program text.

pp-if-section:
pp-if-group pp-dif-groups,: pp-else-group,y pp-endif-line

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 29

C# LANGUAGE REFERENCE

pp-if-group:

#if pp-expresson new-line pp-groupoep
pp-dif -groups

pp-€lif-group

pp-eif-groups pp-dif-group
pp-dif -group:

#elif pp-expression new-line group
pp-€se-group:

#else new-line groupyp:
pp-endif -line

#endif new-line

The example:

#define Debug
class Classl

{
#iT Debug

void Trace(string s) {}
#endi T

}
becomes:

class Classl

void Trace(string s) {}

If sections can nest. Example:

#define Debug // Debugging on
#undef Trace // Tracing off

class PurchaseTransaction

void Commit {
#iF Debug
CheckConsistency(Q);
#if Trace
WriteToLog(this.ToString());

#endif
#endi f
CommitHelper();

}
}
2.3.3 Pre-processing control lines
The #error and #warning features enable code to report warning and error conditions to the compiler for
integration with standard compile-time warnings and errors.

pp-controline:
#error pp-message

#warning pp-message

pp-message:
pp-tokens,y:
The example

30 Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

#warning Code review needed before check-in
#define DEBUG

#if DEBUG && RETAIL
#error A build can"t be both debug and retail!
#endif

class Classl

£.3

always produces awarning ('Code review needed before check-in"), and produces an error if the
pre-processing identifiers DEBUG and RETAIL are both defined.

2.3.4 #line

The #1 ine feature enables a devel oper to alter the line number and source file names that are used by the
compiler in output such as warnings and errors. If no line directives are present then the line number and
file name are determined automatically by the compiler. The #line directive is most commonly used in
meta-programming tools that generate C# source code from some other text input.

pp-line-number:
#line integer-literal
#1ine integer-literal string-literal

pp-integer-literal:

decimal-digit

decimal-digits decimal-digit
pp-string-literal:

" pp-string-literal-characters ™

pp-string-literal-characters:
pp-string-literal-character
pp-string-literal-characters pp-string-literal-character

po-string- literal-character:
Any character except " (U+0022), and white-space

2.3.5 Pre-processing identifiers
Pre-processing identifiers employ a grammar similar to the grammar used for regular C# identifiers:
pp-identifier:
pp-available-identifier
pp-available-identifier:
A pp-identifier-or-keyword that isnot true or false

pp-identifier -or -keyword:
identifier-start-character identifier -part-charactersyy

The symbals true and false are not lega pre-processing identifiers, and so cannot be defined with
#define or undefined with #undef.

2.3.6 Pre-processing expressions

The operators 1, ==, 1=, && and || are permitted in pre-processing expressions. Parentheses can be used
for grouping in pre-processing expressions.

pp-expression:
pp-equality-expression

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 31

C# LANGUAGE REFERENCE

32

PpP-primary-expression:
true
false
pp-identifier
(pp-expression)
pp-unary-expression:
pp-primary-expression
I pp-unary-expression

pp-equality-expression:

pp-equality-expression == pp-logical-and-expression
pp-equality-expresson = pp-logicaland-expression

pp-1ogical-and-expression:
pp-unary-expression
pp-logical-and-expression && pp-unary-expression
pp-logical-or -expression:
pp-logical-and-expression
pp-logical-or-expression || pp-logical-and-expresson
2.3.7 Interaction with white space
Conditional compilation directives must be the first non-white space for aline.
A dngle-line comment may follow on the same line as conditional-compilation directives other than pp-
control-line directives. For example,
#define Debug // Defined if the build is a debug build

For pp-control-line directives, the remainder of the line constitutes the pp-message, independent of the
contents of the line. The example

#warning // TODO: Add a better warning
results in awarning with the contents// TODO: Add a better warning".

A multi-line comment may not begin or end on the same line as a conditional compilation directive. The
example

/* This comment is illegal because it
ends on the same line*/ #define Debug

/* This i1s comment is illegal because it is on the same line */ #define Retail
#define A /* This is comment is illegal because it is on the same line */

#define B /* This comment is illegal because it starts
on the same line */

results in a compile-time error.

Text that otherwise might form a conditional compilation directive can be hidden in a comment. The
example

// This entire line is a commment. #define Debug

/* This text would be a cc directive but it is commented out:
#define Retail
*/

contains no conditional compilation directives, and consists entirely of white space.

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

2.4 Lexical analysis

2.4.1 Input

input:

i nput-elementSyy
input-elements:

input-element

input-elements input-element

input-element:
comment
white-space
token

2.4.2 Input characters

input-character:
any Unicode character

2.4.3 Line terminators

line-terminator:
TBD

2.4.4 Comments

comment:
TBD

Example:
// This is a comment
int i;
/* This is a

multiline comment */
int j;

2.4.5 White space

white-space:
new-line
Thetab character (U+0009)
The vertical tab character (U+000B)
The form feed character (U+000C)
The "controkZ" or "substitute" character (U+001A)
All characters with Unicode class"Zs'

2.4.6 Tokens

There are five kinds of tokens: identifiers, keywords, literas, operators, and punctuators. White space, in its

various forms (described below), is ignored, though it may act as a separator for tokens.

Copyright O Microsoft Corporation1999-2000. All Rights Reserved.

33

C# LANGUAGE REFERENCE

34

token:
identifier
keyword
literal
operator -or -punctuator

2.5 Processing of Unicode character escape sequences

A Unicode character escape sequence represents a Unicode character. Unicode character escape sequences
are permitted in identifiers, string literals, and character literals.

unicode-character -escape-sequence:

\u hex-digit hex-digit hexdigit hexdigit
Multiple trandations are not performed. For instance, the string literal “\u005Cu005C” is equivaent to
“\u005C” rather than “\\". (The Unicode value \u005cC is the character “\".)

The example

class Classl

static void Test(bool \u0066) {
char ¢ = "\u0066";
if (\u0066)
3 Console._WriteLine(c.ToString());
}
shows several uses of \u0066, which is the character escape sequence for the letter “f”. The program is

equivaent to

class Classl

static void Test(bool) {
char ¢ = "f";
if ()
Console_WriteLine(c.ToString());

}
}

2.5.1 Identifiers

These identifier rules exactly correspond to those recommended by the Unicode 2.1 standard except that
underscore and similar characters are allowed as initial characters, formatting characters (class Cf) are not
allowed in identifiers, and Unicode escape characters are permitted in identifiers.
identifier:

available-identifier

@ identifier-or-keyword

available-identifier:

An identifier-or-keyword that is not akeyword
identifier-or -keyword:

identifier-start-character identifier -part-character Soy
identifier-start-character:

|etter-character
under score-character

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

identifier-part-characters:
identifier-part-character
identifier-part-characters identifier-part-character

identifier-part-character:
letter-character
combining-character
decimal-digit-character
under score-character

lettercharacter:
A Unicode character of classesLu, LI, Lt, Lm, Lo, or NI
A unicode-char acter-escape-sequeance representing a character of classesLu, LI, Lt, Lm, Lo, or NI

combining-character:
A Unicode character of classes Mn or Mc
A unicode-char acter-escape-sequence representing a character of classes Mn or Mcdecimal-digit-
character:
A Unicode character of theclassNd
A unicode-char acter-escape-sequence representing a character of the class Nd

under score-character:
A Unicode character of the class Pc
A unicode-character-escape-sequence representing a character of the class Pc

Examples of legal identifiersinclude “identifierl” ," _identifier2” ,and“@if".

The prefix “@” enables the use of keywords as identifiers. The character @ is not actually part of the
identifier, and so might be seen in other languages as a normal identifier, without the prefix. Use of the@
prefix for identifiers that are not keywords is permitted, but strongly discouraged as a matter of style.

The example:

class @class

{
static void @static(bool @bool) {

if (@bool)
Console.WriteLine(""true');

else
Console._WriteLine(""false");

}
}

class Classl

{

static void M {
@class.@static(true);
b

}

defines aclass named “class” with a static method named “static” that takes a parameter named
“bool”.

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 35

C# LANGUAGE REFERENCE

36

2.5.2 Keywords
keyword: one of

break
checked
default
enum
finally
goto
interface
namespace
out
public
sealed
struct
try
unsafe
while

byte
class
delegate
event
fixed

if
internal
new
override
readonly
short
switch
typeof
ushort

abstract base bool
case catch char
const continue decimal
do double else
explicit extern false
float for foreach
implicit in int
is lock long
null object operator
params private protected
ref return sbhyte
sizeof static string
this throw true
uint ulong unchecked
using virtual void

2.5.3 Literals

literal:
boolean-literal
integer-literal
real-literal
character-literal
string-literal
null-literal

2.5.3.1 Boolean literals

There are two boolean literal values; true and false.

boolean-literal:
true
false

2.5.3.2 Integer literals

Integer literals have two possible forms. decimal and hexadecimal.

integer-literal:
decimal-integer-literal
hexadecimal-integer-literal

decimal-integer-literal:
decimal-digits integer-type-suffix

decimal-digits:

decimal-digit

decimal-digits decimal-digit
decimal-digit: one of

0 1 2 3 45 6 7 8 9

integer-type-suffix: one of

U u L I UL Ul uL ul LU Lu

lu

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

hexadecimal-integer-literal:
0x hex-digits integer-type-suffiXo
hex-digits:
hex-digit
hex-digits hex-digit
hex-digit: one of
0 1 2 3 45 6 7 8 9 A B CUDEF ab c de f
The type of an integer literal is determined as follows:

If the literal has no suffix, it has the first of these types in which its value can be represented: int, uint,
long, ulong.

If the literal is suffixed by U or u, it hasthe first of these typesin which its value can be represented:
uint, ulong.

If the literal is suffixed by L or I, it hasthe first of these typesin which its value can be represented:
long, ulong.

If the literdl is suffixed by UL, Ul uL, ul, LU, Lu, 1U, or Ly, it is of typeulong.
If the value represented by an integer literd is outside the range of the ulong type, an error occurs.

To permit the smallest possible int and long vaues to be written as decima integer literals, the following
two rules exist:

When a decimal-integer-literal with the value 2147483648 (2°') and no integer-type-suffix appears as
the operand of the unary - operator (87.6.2), the result is a constant of type int with the value
- 2147483648 (-2%). In all other situations, such adecimal-integer-literal is of type uint.

When a decimal-integer-literal with the value 9223372036854775808 (2%) and no integer -type-suffix or
the integer-type-suffix L or I appears as the operand of the unary - operator (87.6.2), theresultisa
constant of type long with the value -9223372036854775808 (-2°). In al other sit uations, such a
decimal-integer-literal is of type ulong.

2.5.3.3 Real literals

real-literal:
decimal-digits . decimal-digits exponentparty real-type-suffiXopt
. decimal-digits exponentpartyy real-type-suffiXop
decimal-digits exponent-part real-type-suffiXop
decimal-digits real-type-suffix

exponent-part:
e Signy decimal-digits
E signy, decimal-digits
sign: one of
+ -

real-type-suffix: one of

F f D d M m
If no real type suffix is specified, the type of the real literd 5 double. Otherwise, the real type suffix
determines the type of the real literd, as follows:

A red litera suffixed by F or F isof type Float. For example, the literals 1F,1.5F, 1e10F, and
-123.456F aredl of type float.

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 37

C# LANGUAGE REFERENCE

A redl litera suffixed by D or d isof type double. For example, theliterals 1d, 1.5d, 1e10d, and
-123.456D aredl of type double.

A red litera suffixed by M or m is of type decimal. For example, the literals 1m, 1.5m, 1e10m, and
-123.456M aredl of type decimal.

If the specified literal cannot be represented in the indicated type, then a compile-time error occurs.

2.5.3.4 Character literals
A character literal is a single character enclosed in single quotes, asin "a-.

character-literal:
* character -

character:
single-character
Imple-escape-sequence
hexadeci mal-escape-sequence
uni code-char acter - escape-sequence

single-character:
Any character except * (U+0027), \ (U+005C), and white-space other than space (U+0020)

simple-escape-sequence: one of
*" \" \\ N0 \a \b \f \n \r \t \v

hexadeci mal -escape-sequence:
\x hex-digit hex-digitey hex-digity: hex-digitoy

A character that follows a backslash character (\) in asimple-escape-sequence or hexadeci mal-escape-
sequence must be one of the following characters. =, ", \, 0,a, b, f, n, r, t,x, v. Otherwise, acompile-
time error occurs.

A simple escape sequence represents a Unicode character encoding, as described in the table below.

38 Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

Escape Character Unicode

sequence name encoding

* Single 0x0027
guote

\" Double 0x0022
guote

\\ Backslash 0x005C

\O0 Null 0x0000

\a Alert 0x0007

\b Backspace 0x0008

\f Form feed 0x000C

\n New line 0x000A

\r Carriage 0x000D
return

\t Horizonta 0x0009
tab

\v Vertica tab 0x000B

2.5.3.5 String literals

C# supports two forms of string literals: regular string literals and verbatim string literals. A regular string
literal consigts of zero or more characters enclosed in double quotes, asin “Hello, world", and may
include both simple escape sequences (such as \ t for the tab character) and hexadecimal escape sequences.

A verbatim string literal consists of an @ character followed by a double -quote character, zero or more
characters, and a closing double-quote character. A simple examplesis@''Hello, world".Inaverbatim
string literal, the characters between the delimiters are interpreted verbatim, with the only exception being a
guote escape sequence. In particular, smple escape sequences and hexadecimal escape sequences are not
processed in verbatim string literals. A verbatim string literal may span multiple lines.

string-literal:
regular-string-literal
verbatim-string-literal
regular-string-literal:
regular-string-literal-characters,,; ™

regular -string-literal-characters:
regular-gring-literal-character
regular-string-literal-characters regular-string-literal-character

regular -string-literal-character:
single-regular -string-literal-character
simple-escape-sequence
hexadeci mal-escape-sequence
unicode-char acter-escape-sequence

single-regular-string-literal-character:
Any character except ' (U+0022), \ (U+005C), and white-gpace other than space (U+0020)

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 39

C# LANGUAGE REFERENCE

verbatim-string-literal:
@ verbatim -string-literal-charactersyy "
verbatim-string-literal-characters:

verbatim-string-literal-character
verbatim-string-literal-characters verbatim-string-literal-character

verbatim-string-literal-character:
single-verbatim-string-literal-character
quote-escape-sequence

single-ver batim-string-literal-character:
any character except "

quote-escape-Ssequence:

The example

string a = "hello, world"; // hello, world

string b = @'hello, world"; // hello, world

string c = "hello \t world"; // hello world

string d = @ hello \t world"; // hello \t world

string e = "Joe said \"Hello\" to me"; // Joe said "Hello"

string ¥ = @"Joe said ""Hello"" to me"; // Joe said "Hello"

string g = "\\\\sever\\share\\file.txt"”; // \\server\share\file.txt
string h = @"\\server\share\file._txt"; /7 \\server\share\file.txt
string i = "one\ntwo\nthree"';

string j = @'"one

two

three™;

shows a variety of gtring literals. The last string literal, j, is averbatim string literal that spans multiple
lines. The characters between the quotation marks, including white space such as newline characters, are

duplicated verbatim.

2.5.3.6 The null literal

null-literal:
null

2.5.4 Operators and punctuators
operator -or-punctuator: one of

{ } L 1 () - , : ;
+ - * / % & | n ! ~
= < > ? ++ - && 11 << >>
== 1= <= >= += —_= *= = Y%= =
I= N= <<= >>= ->
40 Copyright O Microsoft Corporation 19932000

. All Rights Reserved.

Chapter

3. Basic concepts

3.1 Declarations

Declarations in a C# program define the congtituent elements of the program. C# programs are organized
using namespaces (89), which can contain type declarations and nested namespace declarations. Type
declarations (89.5) are used to define classes (§10), structs (811), interfaces (8 13), enums (814), and
delegates (§815). The kinds of members permitted in a type declaration depends on the form of the type
declaration. For instance, class declarations can contain declarations for instance constructors (810.10),
destructors (810.11), static constructors (810.12), constants (8§ 10.3), fields (810.4), methods (§10.5),
properties (§10.6), events (810.7), indexers (810.8), operators (§10.9), and nested types.

A declaration defines a name in the declaration space to which the declaration belongs. Except for
overloaded congtructor, method, indexer, and operator names, it is an error to have two or more

declarations that introduce members with the same name in a declaration space. It is never possible for a
declaration space to contain different kinds of members with the same name. For example, a declaration

space can never contain afield and a method by the same name.
There are several different types of declaration spaces, as described in the following.

Within al source files of a program, namespace-member-declar ations with no enclosing namespace-
declaration are members of a single combined declaration space called the global declaration space.

Within al source files of a program, namespace-member-declarations within namespace-declarations
that have the same fully qualified namespace name are members of a single combined declaration space.

Each class, struct, or interface declaration creates a new declaration space. Names are introduced into
this declaration space through class-member-declarations, struct-member -declarations, or interface:
member -declarations. Except for overloaded constructor declarations and static constructor
declarations, a class or struct member declaration cannot introduce a member by the same name asthe
class or struct. A class, struct, or interface permits the declaration of overloaded methods and indexers.
A class or struct furthermore permits the declaration of overloaded constructors and operators. For
instance, a class, struct, or interface may contain multiple method declarations with the same name,
provided these method declarations differ in their signature (83.4). Note that base classes do not
contribute to the declaration space of a class, and base interfaces do not contribute to the declaration
space of an interface. Thus, a derived class or interface is alowed to declare a member with the same
name as an inherited member. Such amember is said to hide the inherited member.

Each enumeration declaration creates a new declaration space. Names are introduced into this
declaration space through enum-member-declarations

Each block or switch-block creates a separate declaration space for local variables. Names are
introduced into this declaration space through local-variable-declarations. If ablock isthe body o a
constructor or method declaration, the parameters declared in the for mal-parameter-list are members of
the block’ s local variable declaration space The local variable declaration space of a block includes
any nested blocks. Thus, within a nested block it is not possible to declare alocal variable with the
same name as alocal variable in an enclosing block.

Each block or switch-block creates a separate declaration space for labels. Names are introduced into
this declaration space through label ed-statements, and the names are referenced through goto-
statements. The label declaration spaceof a block includes any nested blocks. Thus, within a nested
block it is not possible to declare a label with the same name as alabel in an enclosing block.

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 41

C# LANGUAGE REFERENCE

42

The textual order in which names are declared is generally of no significance. In particular, textual order is
not significant for the declaration and use of namespaces, types, constants, methods, properties, events,
indexers, operators, constructors, destructors, and static constructors. Declaration order is significant in the
following ways:

Declaration order for field declarations and local variable declarations determines the order in which
their initidlizers (if any) are executed.
Local variables must be defined before they are used (83.5).

Declaration order for enum member declarations (814.2) is significant when constant-expression values
are omitted.

The declaration space of a namespaceis “open ended”, and two namespace declarations with the same fully
qualified name contribute to the same declaration space. For example

namespace Megacorp.Data

class Customer

{

}
}

namespace Megacorp.Data

class Order

{

}
}

The two namespace declarations above contribute to the same declaration space, in this case declaring two
classes with the fully qualified names Megacorp.Data.Customer and Megacorp.Data.Order.
Because the two declarations contribute to the same declaration space, it would have been an error if each
contained a declaration of a class with the same name.

The declaration space of a block includes any nested blocks. Thus, in the following example, the F and G
methods are in error because the name i is declared in the outer block and cannot be redeclared in the inner

block. However, theHand I method isvdid since thetwo i’ s are declared in separate non-nested blocks.

class A

void FO {
int 1 = 0;
if (true) {
inti =1;
3
3
void GO {
if (true) {
int i =0;
I
int 1 =1;
¥

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

void HQO {
it (true) {
int i = 0;

%f (true) {
int i =1;
}
}

void 1) {
for (int i
HO:
for (int i
HO:

< 10; i++)

0; 1 < 10; i++)

}

3.2 Members
Namespaces and types have members. The members of an entity are generally available through the use of

aqualified name that starts with areference to the entity, followed by a“.” token, followed by the name of
the member.

Members of atype are either declared in the type or inherited from the base class of the type. When atype
inherits from a base class, al members of the base class, except constructors and destructors, become
members of the derived type. The declared accessibility of a base class member does not control whether
the member is inherited—inheritance extends to any member that isn’t aconstructor or destructor. However,
an inherited member may not be accessible in a derived type, either because of its declared accessibility
(83.3) or because it is hidden by a declaration in the type itsdlf (83.5.1.2).

3.2.1 Namespace members

Namespaces and types that have no enclosing namespace are members of the global namespace This
corresponds directly to the names declared in the global declaration space.

Namespaces and types declared within a namespace are members of that namespace. This corresponds
directly to the names declared in the declaration space of the namespace.

Namespaces have no access restrictions. It is not possible to declare private, protected, or internal
namespaces, and namespace names are aways publicly accessble.

3.2.2 Struct members

The members of a struct are the members declared in the struct and the members inherited from class
object.

The members of a smple type correspond directly to the members of the struct type aliased by the simple
type:

The members of sbyte are the members of the System.SByte sruct.

The members of byte are the members of the System.Byte struct.

The members of short are the members of the System. Int16 struct.

The members of ushort are the members of the System.UInt16 struct.

The members of int are the members of the System. Int32 struct.

The members of uint are the members of the System.UInt32 druct.

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 43

C# LANGUAGE REFERENCE

44

The members of 1ong are the members of the System. Int64 struct.

The members of ulong are the members of the System.UInt64 struct.
The members of char are the members of the System.Char struct.

The members of Float are the members of the System.Single struct.
The members of double arethe members of the System.Double struct
The members of decimal are the members of the System.Decimal struct.

The members of bool are the members of the System.Boolean sruct.

3.2.3 Enumeration members

The members of an enumeration are the constants declared in the enumeration and the members inherited
from classobject.

3.2.4 Class members

The members of aclass are the members declared in the class and the members inherited from the base

class (except for classobject which has no base class). The members inherited from the base class include
the constarts, fields, methods, properties, events, indexers, operators, and types of the base class, but not

the constructors, destructors, and static constructors of the base class. Base class members are inherited
without regard to their accessihility.

A class dedaration may contain declarations of constants, fields, methods, properties, events, indexers,
operators, congtructors, destructors, static constructors, and types.

The members of object and string correspond directly to the members of the class types they dlias:
The members of object arethe members of the System.Object class.

The members of string arethe members of the System.String class.

3.2.5 Interface members

The members of an interface are the members declared in the interface and in all base interfaces of the
interface, and the members inherited from classobject.

3.2.6 Array members
The members of an array are the members inherited from class System.Array.

3.2.7 Delegate members
The members of adelegate are the members inherited from class System.Delegate.

3.3 Member access

Declarations of members alow control over member access. The accessibility of a member is established
by the declared accessihility (83.3.1) of the member combined with the accessibility of the immediately
containing type, if any.

When access to a particular member is alowed, the member is said to be accessible. Conversely, when
access to a particular member is disallowed, the member is said to be inaccessible. Accessto amember is
permitted when the textual location in which the access takes place is included in the accessibility domain
(83.3.2) of the member.

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

3.3.1 Declared accessibility
The declared accessihility of a member can be one of the following:

Public, which is selected by including apublic modifier in the member declaration. The intuitive
meaning of public is“access not limited”.

Protected internal (meaning protected or internal), which is selected by including both aprotected
and an internal modifier in the member declaration. The intuitive meaning of protected
internal is*“access limited to this project or types derived from the containing class’.

Protected, which is selected by including a protected modifier in the member declaration. The
intuitive meaning of protected is “access limited to the containing class or types derived from the
containing class’ .

Internal, which is selected by including an internal modifier in the member declaration. The intuitive
meaning of internal is*“access limited to this project”.

Private, which is sdected by including a private modifier in the member declaration. The intuitive
meaning of private is“access limited to the containing type”.

Depending on the context in which a member declaration takes place, only certain types of declared
accessi bility are permitted. Furthermore, when a member declaration does not include any access modifiers,
the context in which the declaration takes place determines the default declared accessibility.

Namespaces implicitly have public declared accessibility. No access modifiers are allowed on
namespace declarations.

Types declared in compilation units or namespaces can have public or internal declared
accessi bility and default to internal declared accessibility.

Class members can have any of the five types of declared accessibility and default to private declared
accessihility. (Note that a type declared as amember of a class can have any of the five types of
declared accessibility, whereas a type declared as a member of a namespace can have only public or
internal declared accessibility.)

Struct members can have public, internal, or private declared accessibility and default to
private declared accessibility. Struct members cannot have protected or protected internal
declared accessibility.

Interface members implicitly havepublic declared accessibility. No access modifiers are allowed on
interface member declarations.

Enumeration members implicitly have public declared accessibility. No access modifiers are dlowed
on enumeration member declarations.

3.3.2 Accessibility domains

The accessibility domain of a member is the (possibly digoint) sections of program text in which access to
the member is permitted. For purposes of defining the accessibility domain of a member, a member is said
to be top-leve if it is not declared within atype, and amember is said to be nested if it is declared within
another type. Furthermore, the program text of a project is defined as all program text contained in all
source files of the project, and the program text of atypeisdefined asal program text contained between
the opening and closing “{” and“}" tokensin the class-body, struct-body, interface-body, or enumbody of
the type (including, possibly, types that are nested within the type).

The accessibility domain of a predefined type (such asobject, int, or double) isunlimited.
The accessibility domain of atop-level type T declared in a project P is defined as follows:

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 45

C# LANGUAGE REFERENCE

If the declared accessihility of T ispublic, the accessibility domain of T is the program text of P and
any project that references P.

If the declared accessibility of T isinternal, the accessibility domain of T is the program text of P.

From these definitions it follows that the accessibility domain of atop-level type is aways at least the
program text of the project in which the type is declared.

The accessibility domain of a nested member M declared in atype T within aproject P is defined as follows
(noting that M may itself possibly be atype):
If the declared accessibility of M ispublic, the accessibility domain of M is the accessibility domain of
T.

If the declared accessibility of M isprotected internal, the accessibility domain of M isthe
intersection of the accessibility domain of T with the program text of P and the program text of any
type derived from T declared outside P.

If the declared accessibility of M isprotected, the accessibility domain of M is the intersection of the
accessibility domain of T with the program text of T and any type derived from T.

If the declared accessibility of M isinternal, the accessibility domain of M isthe intersection of the
access bility domain of T with the program text of P.

If the declared accessibility of M isprivate, the accessibility domain of M is the program text of T.

From these definitions it follows that the accessibility domain of a nested member is aways at least the
program text of the type in which the member is declared. Furthermore, it follows that the accessibility
domain of a member is never more inclusive than the accessibility domain of the type in which the member
is declared.

In intuitive terms, when a type or member Mis accessed, the following steps are evaluated to ensure that the
access is permitted:

Firg, if M is declared within a type (as opposed to a compilation unit or a namespace), an error occurs if
that type is not accessible.

Then, if M ispublic, the accessis permitted.

Otherwise, if M isprotected internal , the access is permitted if it occurs within the project in which
M is declared, or if it occurs within a class derived from the classin which M is declared and takes place
through the derived class type (83.3.3).

Otherwise, if M is protected, the access is permitted if it occurs within the classin which M is declared,
or if it occurs within a class derived from the classin which M is declared and takes place through the
derived class type (83.3.3).

Otherwise, if M is internal, the access is permitted if it occurs within the project in which M is
declared.

Otherwise, if M is private, the access is permitted if it occurs within the type in which M is declared.
Otherwise, the type or member is inaccessible, and an error occurs.
In the example

46 Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

public class A

{
public static int X;
internal static int Y;
private static iInt Z;

}

%nternal class B
public static int X;
internal static iInt Y;
private static int Z;

public class C
public static int X;

internal static iIint Y;
private static int Z;

rivate class D

T W

public static int X;
internal static int Y;
private static int Z;
}
}

the classes and members have the following accessibility domains:
The accessibility domain of Aand A. X is unlimited.

The accessibility domain of A.Y,B,B.X,B.Y,B.C,B.C.X,and B.C.Y isthe program text of the
containing project.

The accessibility domain of A.z isthe program text of A.

The accessibility domain of B.Z and B. D is the program text of B, including the program text of B.C
and B.D.

The accessibility domain of B.C.Z isthe program text of B.C.
The accessibility domain of B.D.X,B.D.Y,and B.D.Z is the program text of B.D.

Asthe example illustrates, the accessibility domain of amember is never larger than that of a containing
type. For example, even though al X members have public declared accessibility, al but A. X have
accessibility domains that are constrained by a containing type.

As described in 83.2, all members of a base class, except for constructors and destructors, are inherited by
derived types. This includes even private members of a base class. However, the accessibility domain of a

private member includes only the program text of the type in which the member is declared. In the example

class A
{
int x;
static void F(B b) {
b.x = 1; // 0Ok
3
3

Copyright O Microsoft Corporation1999-2000. All Rights Reserved.

a7

C# LANGUAGE REFERENCE

48

class B: A

{
static void F(B b) {
b.x = 1; // Error, X not accessible
H

}

the B classinherits the private member x from the A class. Because the member is private, it isonly
access ble within the class-body of A. Thus, the accessto b.x succeedsin the A. F method, but fals in the
B.F method.

3.3.3 Protected access

When aprotected member is accessed outside the program text of the classin which it is declared, and
when aprotected internal member is accessed outside the program text of the project in which it is
declared, the access is required to take place through the derived class type in which the access occurs. Let
B be a base class that declares a protected member M, and let D be a class that derives from B. Within the
class-body of D, accessto M can take one of the following forms:

An unquaified type-name or primary-expression of the form M.

A type-name of theform T .M, provided T isD or aclass derived from D.

A primary-expression of the form E .M, provided the type of E iSD or aclass derived from D.
A primary-express on of the form base M.

In addition to these forms of access, a derived class can access a protected constructor of abase classin a
constructor-initializer (810.10.1).

In the example
public class A

protected int Xx;

static void F(A a, B b) {
a.x = 1; // Ok
b.x = 1; // Ok

}

}
public class B: A

static void F(A a, B b) {

a.x 1; // Error, must access through instance of B
b.x 1; // Ok
}

}

within A, it is possible to access x through instances of both A and B, since in either case the access takes
place through an instance of A or aclass derived from A. However, within B, it is not possible to access x
through an instance of A, since A does not derive from B.

3.3.4 Accessibility constraints

Severa congtructs in the C# language require atype to be at least as accessible asa member or another
type. A type T is said to be at least as accessible as a member or typeM if the accessibility domain of T isa
superset of the accessibility domain of M. In other words, T isat least as accessible as M if T isaccessblein
all contexts where M is accessible.

The following accessibility constraints exist:

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

The direct base class of aclass type must be at least as accessible as the class type itsdlf.
The explicit base interfaces of an interface type must be at least as accessible as the interface type itself.

The return type and parameter types of a delegate type must be at least as accessible as the delegate type
itself.

The type of aconstant must be at least as accessible as the constant itself.

Thetype of afield must be at least as accessible asthe field itself.

The return type and parameter types of a method must be at least as accessible as the method itself.
The type of a property must be at least as accessible as the property itself.

The type of an event must be at least as accessible as the event itsdlf.

The type and parameter types of an indexer must be at least as accessible as the indexer itself.

The return type and parameter types of an operator must be at least as accessible as the operator itself.
The parameter types of a constructor must be at least as accessible as the constructor itsalf.

In the example

class A {...}
public class B: A {...}
the B classisin error because A is not at least as accessible as B.

Likewise, in the example
class A {...}

public class B

{
AFO {---}
internal A GO {---}

public A HO {...}

the H method in B isin error because the return type A isnot at least as accessible as the method.

3.4 Signatures and overloading
Methods, congtructors, indexers, and operators are characterized by their signatures:

The signature of a method consists of the name of the method and the number, modifiers, and types of
itsformal parameters. The signature of a method specifically does not include the return type.

The signature of a constructor consists of the number, modifiers, and types of its formal parameters.

The signature of an indexer consists of the number and types of its formal parameters. The signature of
an indexer specifically does not include the element type.

The signature of an operator consists of the name of the operator and the number and types of its forma
parameters. The signature of an operator specifically does not include the result type.

Signatures are the enabling mechanism for overloading of members in classes, structs, and interfaces:

Overloading of methods permits a class, struct, or interface to declare multiple methods with the same
name, provided the signatures of the methods are dl unique.

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 49

C# LANGUAGE REFERENCE

50

Overloading of constructors permits a class or struct to declare multiple constructors, provided the
signatures of the constructors are al unique.

Overloading of indexers permits a class, struct, or interface to declare multiple indexers, provided the
signatures of the indexers are al unique.

Overloading of operators permits a class or struct to declare multiple operators with the same name,
provided the signatures of the operators are all unique.

The following example shows a set of overloaded method declarations along with their signatures.

interface ITest

void FQ; /7 FQO

void F(int x); // F(int)

void F(ref int x); // F(ref int)
void F(out int x); // F(out int)
void F(int x, int y); // F(int, int)
int F(string s); // F(string)
int F(int x); // F(int)

}

Note that perameter modifiers are part of asignature. Thus, F(int), F(ref int),and F(out int) are
all unigque signatures. Furthermore note that even though the second and last method declarations differ in

return types, their signatures are both F(int). Thus, compiling the above example would produce errors

for the second and last methods.

3.5 Scopes

The scope of aname is the region of program text within which it is possible to refer to the entity declared
by the name without qualification of the name. Scopes can be nested, and an inner scope may redeclare the
meaning of a name from an outer scope. The name from the outer scope is then said to be hidden in the
region of program text covered by the inner scope, and access to the outer name is only possible by
qualifying the name.

The scope of a namespace member declared by a namespace-member -declaration with no enclosing
namespace-declarationis the entire program text of each compilation unit.

The scope of a namespace member declared by a namespace-member -declaration within a namespace-
declaration whose fully qualified name isN is the namespace body of every namespace-declaration
whose fully quaified nameis N or starts with the same sequence of identifiers asN.

The scope of a name defined or imported by a using-directive extends over the namespace member -
declarations of the compilation-unit or namespace-body in which the using-directive occurs. A using-
directive may make zero or more namespace or type names available within a particular compilation-

unit or namespace body, but does not contribute any new members to the underlying declaration space.
In other words, ausing-directive is not transitive but rather affects only the compilation-unit or

namespace-body in which it occurs.

The scope of amember declared by a class-member-declaration is the class-body in which the
declaration occurs. In addition, the scope of a class member extends to the class-body of those derived
classes that are included in the accessibility domain (83.3.2) of the member.

The scope of amember declared by a struct-member -declaration is the struct-body in which the
declaration occurs.

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

The scope of amember declared by an enum-member-declaration is the enumbody in which the
declaration occurs.

The scope of a parameter declared in a constructor -declarationis the constructor-initializer and block
of that constructor-declaration.

The scope of a parameter declared in a method-declaration is the method-body of that method-
declaration.

The scope of a parameter declared in anindexer-declaration is the accessor-declarationsof that
indexer-declaration.

The scope of a parameter declared in an operator -declaration isthe block of that operator-declaration.

The scope of aloca variable declared in alocal-variable-declaration is the block in which the
declaration occurs. It isan error to refer to aloca variable in atextua position that precedes the
variable-declarator of the local variable.

The scope of alocd variable declared in afor-initializer of a for statement is the for -initializer, thefor-
condition, thefor -iterator, and the contained statement of the for statement.

The scope of alabel declared in alabeled-statement is the block in which the declaration occurs.

Within the scope of a namespace, class, struct, or enumeration member it is possible to refer to the member
in atextud position that precedes the declaration of the member. For example

class A
void FO {
i =1;
¥
int i = 0;

Here, it isvdid for F to refer to i before it is declared.

Within the scope of alocal variable, it isan error to refer to the local variable in atextual position that
precedes the variable-declarator of the loca variable. For example

class A

)
1; // Error, use precedes declaration
i

void GO {
int j
}

void HQ
int a

g =21; // Legal

1)

1, b = ++a; // Legal

¥
}
In the F method above, the first assgnment to i specifically does not refer to the field declared in the outer
scope. Rather, it refers to the local variable and it isin error because it textually precedes the declaration of
the variable. In the G method, the use of j intheinitiaizer for the declaration of j islega because the use

does not precede the variable-declarator. In the H method, a subsequent variable-declarator legally refers
to aloca variable declared in an earlier variable-declarator within the samelocal-variable-declaration.

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 51

C# LANGUAGE REFERENCE

52

The scoping rules for local variables are designed to guarantee that the meaning of a name used in an
expression context is always the same within ablock. If the scope of aloca variable wasto extend only
from its declaration to the end of the block, then in the example above, the first assignment would assign to

the ingtance variable and the second assignment would assign to the loca variable, possibly leading to
errors if the statements of the block were later to be rearranged.

The meaning of a name within ablock may differ based on the context in which the nameis used. In the
example

class Test

{
static void Main() {
string A = "hello, world";
string s = A; // expression context
Type t = typeof(A); // type context
Console.WriteLine(s); // writes "hello, world"”
Console._WriteLine(t.ToString()); // writes "Type: A"
}
}

the name A is used in an expression context to refer to the local variable A and in atype context to refer to
the class A.

3.5.1 Name hiding
The scope of an entity typically encompasses more program text than the declaration space of the entity. In
particular, the scope of an entity may include declarations that introduce new declaration spaces containing

entities of the same name. Such declarations cause the original entity to become hidden Conversely, an
entity is said to be visible when it is not hidden.

Name hiding occurs when scopes overlap through nesting and when scopes overlap through inheritance.
The characteristics of the two types of hiding are described in the following sections.

3.5.1.1 Hiding through nesting

Name hiding through nesting can occur as a result of nesting namespaces or types within namespaces, asa
result of nesting types within classes or structs, and as a result of parameter and local variable declarations.
Name hiding through nesting of scopes always occurs “silently” , i.e. no errors or warnings are reported
when outer names are hidden by inner names.

In the example

class A

{ . .
int i1 =0;

void F(Q)
int i

}

void GO {
i =1;

b

1]

}

within the F method, the instance variable i is hidden by the local variable i, but within the G method, i
still refers to the instance variable.

When aname in an inner scope hides aname in an outer scope, it hides al overloaded occurrences of that
name. In the example

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

class Outer

{
static void F(int 1) {}

static void F(string s) {}
class Inner

void GO {
F(L); // Invokes Outer.lInner.F
F('Hello™); // Error

static void F(long 1) {}

}
}

thecal F(1) invokesthe F declared in Inner because al outer occurrences of F are hidden by the inner
declaration. For the same reason, the call F(""Hello™) isin error.

3.5.1.2 Hiding through inheritance

Name hiding through inheritance occurs when classes or structs redeclare names that were inherited from
base classes. This type of name hiding takes one of the following forms:

A constant, field, property, event, a type introduced in a class or struct hides all base class members
with the same name.

A method introduced in aclass or struct hides all non-method base class members with the same name,
and al base class methods with the same signature (method name and parameter count, modifiers, and
types).

An indexer introduced in a class or struct hides dl base class indexers with the same signature
(parameter count and types).

The rules governing operator declarations (810.9) make it impossible for a derived class to declare an
operator with the same signature as an operator in a base class. Thus, operators never hide one another.

Contrary to hiding a name from an outer scope, hiding an accessible name from an inherited scope causes a
warning to be reported. In the example

class Base

public void FQO {3}

class Derived: Base

public void FQO {} // Warning, hiding an inherited name

the declaration of F inDerived causes awarning to be reported. Hiding an inherited name is specifically
not an error, since that would preclude separate evolution of base classes. For example, the above situation
might have come about because a later version of Base introduced a F method that wasn't present in an
earlier version of the class. Had the above situation been an error, then any change made to abase classin a
separately versioned class library could potentially cause derived classes to become invalid.

The warning caused by hiding an inherited name can be eliminated through use of the new modifier:

class Base

public void FQ {3}
3

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 53

C# LANGUAGE REFERENCE

54

class Derived: Base

{
new public void FQ {}

The new modifier indicates that the FinDerivedis” new” , and that it isindeed intended to hide the
inherited member.

A declaration of anew member hides an inherited member only within the scope of the new member.

class Base

public static void FQ {}

class Derived: Base

new private static void FQQ {3 // Hides Base.F in Derived only

class MoreDerived: Derived

static void GO { FO:; } // Invokes Base.F
}

In the example above, the declaration of F in Derived hides the F that was inherited from Base, but since
the new Fin Derived has private access, its scope does not extend to MoreDerived. Thus, thecal FQ in
MoreDerived.G isvaid and will invoke Base .F

3.6 Namespace and type names

Several contexts in a C# program require anamespace-name or atype-name to be specified. Either form of
name is written as one or more identifiers separated by “.” tokens

namespace-name:
namespace-or -type-name
type-name:
namespace-or -type-name
namespace-or -type-name:
identifier
namespace-or-type-name . identifier
A type-name is a namespace-or -type-name that refers to atype. Following resolution as described below,
the namespace-or -type-name of a type-name must refer to atype, or otherwise an error occurs.

A namespace-name is a hamespace-or-type-name that refers to a namespace. Following resolution as
described below, the namespace-or -type-name of anamespace-name must refer to a namespace, or
otherwise an error occurs.

The meaning of a namespace-or -type-name is determined as follows:
If the namespace-or -type-name consists of asingle identifier:

If the namespace-or -type-name appears within the body of a class or struct declaration, then starting
with that class or struct declaration and continuing with each enclosing class or struct declaration (if
any), if amember with the given name exists, is accessible, and denotes a type, then the namespace-or -
type-name refers to that member. Note that non-type members (constructors, constants, fields, methods,
properties, indexers, and operators) are ignored when determining the meaning of anamespace-or -
type-name.

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

Otherwise, starting with the namespace declaration in which the namespace-or-type-name occurs (if
any), continuing with each enclosing namespace declaration (if any), and ending with the global
namespace, the following steps are evaluated until an entity is located:

If the namespace contains a namespace member with the given name, then the namespace-or -type-
name refers to that member and, depending on the member, is classified as a namespace or atype.

Otherwise, if the namespace declaration contains a using-alias-directive that associates the given

name with an imported namespace or type, then the namespace-or-type-name refers to that namespace
or type.

Otherwise, if the namespaces imported by the using-namespace-directives of the namespace
declaration contain exactly one type with the given name, then the namespace-or -type-name refers to
that type.

Otherwise, if the namespaces imported by the using-namespace-directives of the namespace
declaration contain more than one type with the given name, then the namespace-or-type-name is
ambiguous and an error occurs.

Otherwise, the namespace-or-type-name is undefined and an error occurs

Otherwise, the namespace-or-type-nameis of the form N. I, whereN is a namespace-or -type-name
consigting of al identifiers but the rightmost one, and I is the rightmost identifier. N isfirst resolved as
anamespace-or -type-name. If the resolution of N is not successful, an error occurs. Otherwise, N. 1 is
resolved as follows:

If N isanamespace and 1 isthe name of an accessible member of that namespace, then N. I refersto
that member and, depending on the member, is classified as a namespace or atype.

If N isaclassor struct type and 1 isthe name of an accessibletypein N, then N. 1 refersto that type.

Otherwise, N. I isan invalid namespace-or -type-name, and an error occurs.

3.6.1 Fully qualified names
Every namespace and type has afully qualified name which uniquely identifies the namespace or type
amongdt all others. The fully qualified name of a namespace or type N is determined as follows:

If N isamember of the global namespace, its fully qualified nameis N.

Otherwisg, its fully qualified nameis S.N, where S isthe fully qualified name of the namespace or type
inwhich N is declared.

In other words, the fully qualified name of N is the complete hierarchical path of identifiers that lead to N,
starting from the global namespace. Because every member of a namespace or type must have a unique
name, it follows that the fully qualified name of a namespace or type is aways unique.

The example below shows several namespace and type declarations along with their associated fully
qualified names.

class A {} // A
namespace X // X
class B // X.B
class C {} // X.B.C

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 55

C# LANGUAGE REFERENCE

namespace Y
class D {}
}

namespace X.Y

class E {}
}

56

/7 X.Y

// X.Y.D

/7 X.Y
// X_.Y_E

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

4. Types

The types of the C# language are divided into three categories: Value types, reference types, and pointer
types.

type:
value-type
reference-type
pointer-type

Pointer types can be used only in unsafe code, and are discussed further in §19.2

Vdue types differ from reference typesin that variables of the vaue types directly contain their data,
whereas variables of the reference types store references to their data, the latter known asobjects With
reference types, it is possible for two variables to reference the same object, and thus possible for
operations on one variable to affect the object referenced by the other variable. With value types, the
variables each have their own copy of the data, and it is not possible for operations on one to affect the
other.

C# stype sysem is unified such that a value of any type can be treated as an object. Every type in C#
directly or indirectly derives from theobject classtype, and object isthe ultimate base class of all types.
Vaues of reference types are treated as objects smply by viewing the values as type object. Vaues of
value types are treated as objects by performing boxing and unboxing operations (§4.3).

4.1 Value types

A value typeis either a struct type or an enumeration type. C# provides a set of predefined struct types
caled the smple types. The smple types are identified through reserved words, and are further subdivided
into numeric types, integral types, and floating point types.

value-type:
struct-type

enum-type

struct-type:
type-name
simple-type
simple-type:
numeric-type
bool
numeric-type:
integral-type
floating-point-type
decimal

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 57

C# LANGUAGE REFERENCE

integral-type:
shyte
byte
short
ushort
int
uint
long
ulong
char

floating-poi nt-type:
float
double

enumtype:

type-name
All value types implicitly inherit from classobject. It is not possible for any type to derive from avaue
type, and value types are thus implicitly sealed.

A variable of avalue type dways contains a vaue of that type. Unlike reference types, it is not possible for
avaue of avauetypeto be null or to reference an object of a more derived type.

Assignment to avariable of avalue type creates a copy of the value being assigned. This differs from
assignment to a variable of areference type, which copies the reference but not the object identified by the
reference.

4.1.1 Default constructors

All value types implicitly declare a public parameterless constructor called the default constructor. The
default constructor returns a zero-initialized instance known as the default value for the value type:

For dl smple-types, the default value is the value produced by a bit pattern of al zeros:
For sbyte, byte, short, ushort, int, uint, long, and ulong, the default valueis 0.
For char, the default valueis *\x0000".

For float, the default value is 0. 0OF.

For double, the default valueis0.0d.

For decimal, the default value is 0. 0m.

For bool , the default valueis false.

For an enumtypeE, the default vaueis 0.

For a struct-type, the default value is the value produced by setting al value type fieldsto their defaut
value and al reference typefieldsto nul I.

Like any other constructor, the default constructor of avalue type isinvoked using the new operator. In the
example below, the i and j variables are both initialized to zero.

58 Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

class A
{
void FQ {
int 1 =0;
int J = new int();
}
}

Because every vaue type implicitly has a public parameterless constructor, it is not possible for a struct
type to contain an explicit declaration of a parameterless constructor. A struct type is however permitted to
declare parameterized constructors. For example

struct Point

.
int x, y;
public Point(int x, int y) {
this.x = X;
this.y = vy;
}
}

Given the above declaration, the statements

Point pl new Point();
Point p2 new Point(0, 0);

both create aPoint with x and y initialized to zero.

4.1.2 Struct types

A struct type is a value type that can declare constructors, constants, fields, methods, properties, indexers,
operators, and nested types. Struct types are described in 811

4.1.3 Simple types

C# provides a set of predefined struct types called the smple types. The simple types are identified through
reserved words, but these reserved words are simply aliases for predefined struct typesin theSystem
namespace, as described in the table below.

Reserved word Aliased type
sbyte System.SByte
byte System.Byte
short System. Intl6
ushort System._UIntl6
int System. Int32
uint System.UInt32
long System. Int64
ulong System._UInt64
char System.Char
float System.Single
double System._Double
bool System.Boolean
decimal System.Decimal

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 59

C# LANGUAGE REFERENCE

A simple type and the struct type it aliases are completely indistinguishable. In other words, writing the
reserved word byte isexactly the same aswriting System.Byte, and writing System. Int32 is exactly
the same as writing the reserved word int.

Because asimple type aliases a struct type, every smple type has members. For example, int has the
members declared in System. Int32 and the members inherited from System.Object, and the following

statements are permitted:

int i = int.MaxValue; // System.Int32.MaxValue constant
string s = 1.ToString(Q); // System.Int32.ToString() instance method
string t = 123.ToString(Q); // System.Int32.ToString() instance method

Notice in particular that integer literals are values of type int, and therefore also values of the
System. Int32 struct type.

The simple types differ from other struct types in that they permit certain additional operations.

Most simple types permit values to be created by writing literals (82.5.3). For example, 123 isalitera
of typeint and "a~ isalitera of type char. C# makes no provision for literals of other struct types,
and values of other struct types are ultimately always created through constructors of those struct types.

When the operands of an expression are al simple type constants, it is possible for the compiler to
evaluate the expression at compile time. Such an expression is known as a constant-expression (§7.15).
Expressions involving operators defined by other struct types always imply run time evaluation.

Through const declarations it is possible to declare constants of the simple types (810.3). It is not
possible to have constants of other struct types, but asimilar effect is provided by static readonly
fields.

Conversions involving simple types can participate in evaluation of conversion operators defined by
other struct types, but a user-defined conversion operator can never participate in evaluation of another

user-defined operator (86.4.2).

4.1.4 Integral types

C# supports nine integral types. sbyte, byte, short,ushort, int, uint, long, ulong, and char. The
integral types have the following sizes and ranges of values:

The sbyte type represents signed 8 hit integers with values between —128 and 127.

The byte type represents unsigned 8-bit integers with values between 0 and 255.

The short type represents signed 16-hit integers with val ues between —32768 and 32767.

The ushort type represents unsigned 16-bit integers with values between 0 and 65535.

The int type represents signed 32-bit integers with values between —2147483648 and 2147483647.
The uint type represents unsigned 32-bit integers with va ues between 0 and 4294967295.

The long type represents signed 64-bit integers with val ues between —9223372036854775808 and
9223372036854775807.

The ulong type represents unsigned 64-bit integers with values between 0 and 18446744073709551615.

The char type represents unsigned 16-bit integers with values between 0 to 65535. The set of possible
values for the char type corresponds to the Unicode character set.

The integral-type unary and binary operators always operate with signed 32-bit precision, unsigned 32-bit
precision, signed 64-bit precision, or unsigned 64-bit precision:

60 Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

For theunary + and ~ operators, the operand is converted to type T, where T isthefirst of int,uint,
long, and ulong that can fully represent all possible values of the operand. The operation is then
performed using the precision of type T, and the type of the result T.

For the unary — operator, the operand is converted to type T, where T isthe first of int and long that
can fully represent al possible values of the operand. The operation is then performed using the
precision of type T, and the type of the result is T. The unary — operator cannot be applied to operands
of typeulong.

Forthebinary +, -, *, /7, %, & ", |,==, 1=, >, <, >=, and <= operators, the operands are converted to
type T, where T isthefirst of int,uint, long, and ulong that can fully represent al possible values
of each operand. The operation is then performed using the precision of type T, and the type of the
resultis T (or bool for the relational operators).

For thebinary << and >> operators, the left operand is converted to type T, where T isthe first of int,
uint, long, and ulong that can fully represent al possible values of the operand. The operation is
then performed using the precision of type T, and the type of the result T.

The char typeisclassified as an integral type, but it differs from the other integral typesin two ways.

There are no implicit conversions from other types to the char type. In particular, even though the
sbyte, byte, and ushort types have ranges of values that are fully representable using the char type,
implicit conversions from sbyte, byte, or ushort to char do not exist.

Constants of the char type must be written as character-literals. Character constants can only be

written asinteger-literals in combination with a cast. For example, (char)10isthe same as
"\x000A".

The checked and unchecked operators and statements are used to control overflow checking for integral-
type arithmetic operations and conversions (§7.5.13). In achecked context, an overflow produces a
compile-time error or causes an OverflowException to be thrown. In an unchecked context, overflows
are ignored and any high-order bits that do not fit in the destination type are discarded.

4.1.5 Floating point types

C# supports two floating point types: float and double. The float and double types are represented
using the 32-hit single-precision and 64-hit double-precision |EEE 754 formats, which provide the
following sets of values:

Positive zero and negative zero. In most situations, positive zero and negative zero behave identically as
the simple value zero, but certain operations distinguish between the two.

Positive infinity and negative infinity. Infinities are produced by such operations as dividing a non-zero
number by zero. For example 1.0 / 0.0 yields positive infinity, and —1.0 / 0.0 yields negative
infinity.

The Not-a-Number value, often abbreviated NaN. NaN’ s are produced by invalid floating-point
operations, such as dividing zero by zero.

The finite set of non-zero values of the form s x m x 2°, wheresis 1 or -1, and mand e are determined
by the particular floating-point type: For Float, 0< m< 2* and -149 = e = 104, and for double,0<
m< 2°° and -1075 = e = 970.

The Float type can represent values ranging from approximately 1.5 x 10 *° to 3.4 x 10°® with a precision
of 7 digits.

The double type can represent values ranging from approximately 5.0x 10°%** to 1.7 x 10°* with a
precision of 15-16 digits.

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 61

C# LANGUAGE REFERENCE

62

If one of the operands of a binary operator is of afloating-point type, then the other operand must be of an
integral type or a floating-point type, and the operation is evauated as follows:

If one of the operands of is of an integral type, then that operand is converted to the floating-point type
of the other operand.

Then, if either of the operands is of typedouble, the other operand is converted to double, the
operation is performed using at least doub I e range and precision, and the type of the result isdouble
(or bool for therelational operators).

Otherwise, the operation is performed using at least float range and precision, and the type of the
result is Float (or bool for the relational operators).

The floating-point operators, including the assignment operators, never produce exceptions. Instead, in
exceptiond situations, floating-point operations produce zero, infinity, or NaN, as described below:

If the result of afloating-point operation is too smal for the destination format, the result of the
operation becomes positive zero or negative zero.

If the result of afloating-point operation is too large for the destination format, the result of the
operation becomes positive infinity or negative infinity.

If afloating-point operation isinvalid, the result of the operation becomes NaN.
If one or both operands of a floating-point operation is NaN, the result of the operation becomes NaN.

Floating-point operations may be performed with higher precision than the result type of the operation. For
example, some hardware architectures support an “extended” or “long double’ floating-point type with
greater range and precision than the double type, and implicitly perform all floating-point operations using
this higher precision type. Only at excessive cost in performance can such hardware architectures be made
to perform floating-point operations with less precision, and rather than require an implementation to forfeit
both performance and precision, C# allows a higher precision type to be used for all floating-point
operations. Other than delivering more precise resullts, this rarely has any measurable effects. However, in
expressions of theform x *y / z, where the multiplication produces a result that is outside the doubl e
range, but the subsequent division brings the temporary result back into the double rarnge, the fact that the
expression is evaluated in a higher range format may cause a finite result to be produced instead of an
infinity.

4.1.6 The decimal type

The decimal typeisa128-bit data type suitable for financial and monetary caculations. The decimal
type can represent values ranging from 1.0 x 10 % to approximately 7.9x 1072 with 28-29 significant digits.

The finite set of vaues of type decimal areof theform sx mx 10f, where sis1 or—1, 0= m< 2®. and
-28=e =0. The decima type does not support signed zeros, infinities, and NaN's.

A decimal isrepresented as a 96-hit integer scaled by a power of ten. For decimals with an absolute
value lessthan 1.0m, the valueis exact to the 28" decimal place, but no further. For decimal swith an
absolute value greater than or equal to 1.0m, the value is exact to 28 or 29 digits. Contrary to the float
and double datatypes, decimal fractional numbers such as 0.1 can be represented exactly in the decimal
representation. In the float and doub le representations, such numbers are often infinite fractions, making
those representations more prone to round- off errors.

If one of the operands of a binary operator is of type decimal, then the other operand must be of an
integral type or of type decimal. If an integal type operand is present, it is converted to decimal before

the operation is performed.

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

Operations on values of type decimal are exact to 28 or 29 digits, but to no more than 28 decimal places.
Results are rounded to the nearest representable value, and, when aresult is equally close to two
representable values, to the vaue that has an even number in the least significant digit position.

If adecimal arithmetic operation produces a value that is too small for the decimal format after rounding,
the result of the operation becomes zero. If a decimal arithmetic operation produces a result that is too

large for the decimal format, an OverflowException isthrown.

The decimal type has greater precision but smaller range than the floating-point types. Thus, conversions
from the floating- point types to decimal might produce overflow exceptions, and conversions from
decimal to the floating- point types might cause loss of precision. For these reasons, no implicit
conversions exist between the floating-point types and decimal, and without explicit casts, it is not
possible to mix floating-point and decimal operandsin the same expression.

4.1.7 Thebool type

The bool type represents boolean logical quantities. The possible values of type bool are true and
false.

No standard conversions exist between bool and other types. In particular, the bool typeisdistinct and
separate from the integral types, and abool value cannot be used in place of an integra value, nor vice
versa.

In the C and C++ languages, a zero integral value or anull pointer can be converted to the boolean value
false, and anon-zero integral value or a non-null pointer can be converted to the boolean value true. In
C#, such conversions are accomplished by explicitly comparing an integral value to zero or explicitly
comparing an object referenceto nul I.

4.1.8 Enumeration types

An enumeration type is adistinct type with named constants. Every enumeration type has an underlying

type, which can be either byte, short, int, or long. Enumeration types are defined through enumeration
declarations (814.1).

4.2 Reference types
A reference typeis a class type, an interface type, an array type, or a delegate type.

reference-type:
class-type
interface-type
array-type
delegate-type

class-type:
type-name
object
string

interface-type:

type-name
array-type:

non-array-type rank-specifiers
non-array-type:

type

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 63

C# LANGUAGE REFERENCE

64

rank-specifiers:

rank -specifier

rank-specifiers rank-specifier
rank-specifier:

[dimseparators, 1
dim-separators:

ai m-separators
delegate-type:

type-name
A reference type valueis areference to an ingance of the type, the latter known as an object. The specia
valuenul 1 is compatible with all reference types and indicates the absence of an instance.

4.2.1 Class types

A dasstype defines a data structure that contains data members (constants, fields, and events), function
members (methods, properties, indexers, operators, constructors, and destructors), and nested types. Class
types support inheritance, a mechanism whereby derived classes can extend and specialize base classes.
Instances of classtypes are created using object-creation-expressions (§7.5.10.1).

Class types are described in §10.

4.2.2 The object type

The object classtype isthe ultimate base class of &l other types. Every type in C# directly or indirectly
derives from theobject class type.

The object keyword is smply an alias for the predefined System.Object class. Writing the keyword
object isexactly the same aswriting System.Object, and vice versa.

4.2.3 The string type

The string typeisaseaded class type that inherits directly from object. Instances of the string class
represent Unicode character strings.

Values of the string type can be written as string literals (82.5.3.5).

The string keyword issmply an alias for the predefined System. String class. Writing the keyword
string isexactly the same aswriting System.String, and vice versa

4.2.4 Interface types

4.2.5 Array types

An array is a data structure that contains a number of variables which are accessed through computed
indices. The variables contained in an array, aso cdled the elements of the array, are dl of the same type,

and thistype is called the element type of the array.
Array types are described in §12.

4.2.6 Delegate types

A delegate is a data structure that refers to a static method or to an object instance and an instance method
of that object.

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

The closest equivaent of adelegate in C or C++ is afunction pointer, but whereas a function pointer can
only reference static functions, a delegate can reference both static and instance methods. In the latter case,
the delegate stores not only a reference to the method’ s entry point, but also a reference to the object
instance for which to invoke the method.

Delegate types are described in §15.

4.3 Boxing and unboxing

Boxing and unboxing is a central concept in C# s type system. It provides a binding link between value-
typesand reference-types by permitting any value of avalue-type to be converted to and from type object.
Boxing and unboxing enables a unified view of the type system wherein avalue of any type can ultimately
be treated as an object.

4.3.1 Boxing conversions

A boxing conversion permitsany value-type to be implicitly converted to the type object or to any
interface-type implemented by the value-type. Boxing avalue of a value-typeconsists of alocating an
object instance and copying the value-type value into that instance.

The actual process of boxing a value of avalue-type is best explained by imagining the existence of a
boxing class for that type. For any value-type T, the boxing class would be declared as follows:

class T_Box

T value;
T Box(T t) {
value = t;
b
3

Boxing of avaue v of typeT now consists of executing the expression new T_Box(v), and returning the
resulting instance as a value of type object. Thus, the statements

int i = 123;

object box = i;

conceptually correspond to

int 1 = 123;

object box = new int_Box(i);

Boxing classes like T_Box and int_Box above don't actualy exist and the dynamic type of a boxed value
ig't actualy a class type. Instead, a boxed value of type T has the dynamic type T, and a dynamic type
check using the is operator can simply reference type T. For example,

int 1 = 123;
object box = i;
if (box is int) {
Console.Write(""Box contains an int");
}
will output the string “Box contains an int” on the console.

A boxing conversion implies making a copy of the value being boxed. This is different from a conversion
of areference-typeto type object, in which the value continues to reference the same instance and simply
isregarded as the less derived type object. For example, given the declaration

struct Point

public int x, y;

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 65

C# LANGUAGE REFERENCE

66

public Point(int x, int y) {
this.x = X;
this.y = y;

}
the following statements

Point p = new Point(10, 10);

object box = p;

p-x = 20;

Console._Write(((Point)box).x);

will output the value 10 on the console because the implicit boxing operation that occurs in the assignment
of p to box causes the value of p to be copied. Had Point instead been declared a class, the vaue 20
would be output because p and box would reference the same instance.

4.3.2 Unboxing conversions

An unboxing conversion permits an explicit conversion from type object to any valuetype or from any
interface-type to any value-type that implements the interface-type. An unboxing operation consists of first
checking that the object instance is a boxed va ue of the given value-type, and then copying the vaue out of
the instance.

Referring to the imaginary boxing class described in the previous section, an unboxing conversion of an
object box to avalue-type T consists of executing the expression ((T_Box)box) .value. Thus, the
statements

object box = 123;

int i = (int)box;

conceptually correspond to

object box = new int_Box(123);

int i = ((int_Box)box).value;

For an unboxing conversion to agiven value-type to succeed at run-time, the value of the source argument

must be a reference to an abject that was previoudly created by boxing a value of that value-type. If the
source argument isnull 1 or areference to an incompatible object, an Inval idCastException is thrown.

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

5. Variables

Variables represent storage locations. Every variable has a type that determines what values can be stored
in the variable. C# is atype-safe language, and the C# compiler guarantees that values stored in variables
are dways of the appropriate type. The value of a variable can be changed through assignment or through
use of the ++ and -- operators.

A variable must be definitely assigned (85.3) before its value can be obtained.

As described in the following sections, variables are either initially assigned or initially unassigned An
initidly assigned variable has awell defined initial value and is dways considered definitely assigned. An
initialy unassigned variable has no initia value. For an initialy unassigned variable to be considered
definitely assigned at a certain location, an assignment to the variable must occur in every possible
execution path leading to that location.

5.1 Variable categories

C# defines seven categories of variables: Static variables, instance variables, array e ements, value
parameters, reference parameters, output parameters, and local variables. The sections that follow describe
each of these categories.

In the example

class A

static int Xx;

int y;

void F(Cint[] v, int a, ref int b, out int c) {
int i = 1;

}

}

x isadatic variable, y is an instance variable, v[0] is an array ement, a isavalue parameter, b isa
reference parameter, c is an output parameter, and i isalocd variable.

5.1.1 Static variables

A field declared with the static modifier is called a static variable. A static variable comes into existence
when the type in which it is declared is loaded, and ceases to exist when the type in which it is declared is
unloaded.

Theinitial value of a static variable is the default value (85.2) of the variable' s type.
For purposes of definite assgnment checking, a static variable is considered initialy assigned.

5.1.2 Instance variables
A field declared without the static modifier is caled an instance variable.

5.1.2.1 Instance variables in classes

An instance variable of a class comes into existence when a new instance of that classis created, and ceases
to exist when there are no references to that instance and the destructor of the instance has executed.

Theinitid value of an instance variable of aclassisthe default value (85.2) of the variable stype.

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 67

C# LANGUAGE REFERENCE

68

For purposes of definite assignment checking, an instance variable of a class is considered initialy assigned.

5.1.2.2 Instance variables in structs

An ingtance variable of a struct has exactly the same lifetime as the struct variable to which it belongs. In
other words, when a variable of a struct type comes into existence or ceases to exist, so do the instance
variables of the struct.

Theinitial assignment state of an instance variable of a struct in the same as that of the containing struct
variable. In other words, when a struct variable is considered initialy assigned, so are its instance variables,
and when a struct variable is considered initially unassigned, its instance variables are likewise unassigned.

5.1.3 Array elements

The elements of an array come into existence when an array instance is created, and cease to exist when
there are no references to that array instance.

The initia value of each of the elements of an array is the default vaue (85.2) of the type of the array
elements.

For purposes of definite assignment checking, an array element is considered initially assigned.

5.1.4 Value parameters
A parameter declared without a ref or out modifier is a vaue parameter.

A value parameter comes into existence upon invocation of the function member (method, constructor,
accessor, or operator) to which the parameter belongs, and isinitialized with the value of the argument
given in the invocation. A value parameter ceases to exist upon return of the function member.

For purposes of definite assignment checking, a value parameter is considered initially assigned.

5.1.5 Reference parameters
A parameter declared with a ref modifier is a reference parameter.

A reference parameter does not creste a new storage location. Instead, a reference parameter represents the
same storage location as the variable given as the argument in the function member invocation. Thus, the
value of areference parameter is always the same as the underlying variable.

The following definite assignment rules apply to reference parameters. Note the different rules for output
parameters described in §5.1.6.

A variable must be definitely assigned (85.3) before it can be passed as a reference parameter in a
function member invocation.

Within afunction member, areference parameter is considered initialy assigned.

Within an instance method or instance accessor of a struct type, the this keyword behaves exactly asa
reference parameter o the struct type (8 7.5.7).

5.1.6 Output parameters
A parameter declared with an out modifier isan output parameter.

An output parameter does not create a new storage location. Instead, an output parameter represents the
same storage location as the variable given as the argument in the function member invocation. Thus, the
value of an output parameter is aways the same as the underlying variable.

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

The following definite assignment rules apply to output parameters. Note the different rules for reference
parameters described in 85.1.5.

A variable need not be definitely assigned before it can be passed as an output parameter in afunction
member invocation.

Following a function member invocation, each variable that was passed as an output parameter is
considered assigned in that execution path.

Within a function member, an output parameter is considered initially unassigned.

Every output parameter of a function member must be definitely assigned (85.3) before the function
member returns.

Within a constructor of a struct type, the this keyword behaves exactly as an output parameter of the
struct type (87.5.7).

5.1.7 Local variables

A locdl variable is declared by al ocal-variable-declaration, which may occur in a block, afor-statement, or
aswitch-statement A local variable comes into existence when control enters theblock, for-statement, or
switch-statementthat immediately contains the local variable declaration. A local variable ceases to exist
when control leaves itsimmediately containing block, for -statement, or switch-statement.

A local variable is not automatically initialized and thus has no default value. For purposes of definite
assignment checking, aloca variable is considered initially unassigned. A local-variable-declaration may

include a variable-initializer, in which case the variable is considered definitely assigned in its entire scope,
except within the expression provided in the variable-initializer.

Within the scope of alocal variable, it is an error to refer to the local variable in atextual position that
precedes its variable-declarator .

5.2 Default values
The following categories of variables are automatically initialized to their default values:

Static variables.
Instance variables of class instances.
Array elements.
The default value of a variable depends on the type of the variable and is determined as follows:

For avariable of avalue-type, the default value is the same as the value computed by the value-type's
default constructor (84.1.1).

For avariable of areference-type, the default vaueisnull.

5.3 Definite assignment

At agiven location in the executable code of a function member, avariable is said t o be definitely assigned
if the compiler can prove, by static flow analysis, that the variable has been automaticaly initialized or has
been the target of at least one assignment. The rules of definite assignment are;

Aninitialy assigned variable (85.3.1) is always considered definitely assigned.

Aninitially unassigned variable (85.3.2) is considered definitely assigned at a given location if all
possible execution paths leading to that location contain at |east one of the following:

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 69

C# LANGUAGE REFERENCE

A simple assignment (87.13.1) in which the variable is the left operand.

An invocation expression (87.5.5) or object creation expression (§7.5.10.1) that passes the variable as an
output parameter.

For alocal variable, alocal variable declaration (88.5) that includes avariableinitializer.

The definite assignment state of instance variables of a struct-type variable are tracked individualy as well
as collectively. In additiona to the rules above, the following rules apply to struct-type variables and their
instance variables:

An ingtance variable is considered definitely assigned if its containing struct-typevariable is considered
definitely assigned.

A struct-type variable is considered definitely assigned if each of its instance variables are considered
definitely assigned.

Definite assgnment is a requirement in the following contexts:

A variable must be definitely assigned at each location where its value is obtained. This ensures that
undefined values never occur. The occurrence of avariable in an expression is considered to obtain the
value of the variable, except when

the variable is the left operand of a Ssmple assignment,
the variable is passed as an output parameter, or
the variable is a struct-type variable and occurs as the | eft operand of a member access.

A variable must be definitely assigned at each location where it is passed as a reference parameter. This
ensures that the function member being invoked can consider the reference parameter initiadly assigned.

All output parameters of afunction member must be definitely assigned at each location where the
function member returns (through a return statement or through execution reaching the end of the
function member body). This ensures that function members do no return undefined values in output
parameters, thus enabling the compiler to consider a function member invocation that takes a variable
as an output parameter equivalent to an assignment to the variable.

The this variable of a struct-type constructor must be definitely assigned at each location where the
constructor returns.

The following example demonstrates how the different blocks of a try statement affect definite assignment.

70 Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

class A
{
static void FQO {

int i, j;

try {
// neither i nor j definitely assigned
i =1;
// 1 definitely assigned
i =2;
// i1 and j definitely assigned

catch {
// neither 1 nor j definitely assigned
i = 3;

3 // 1 definitely assigned

Ffinally {
// neither i1 nor j definitely assigned
i = 4;
// i1 definitely assigned
3 =5;

3 // i1 and j definitely assigned

// i and j definitely assigned

}
}

The dtatic flow analysis performed to determine the definite assignment state of a variable takes into
account the special behavior of the &&, | |, and ?: operators. In each of the methods in the example

class A
static void F(int x, int y) {
int i;
if xX>08&& (=y) >=0) {
// 1 definitely assigned

else {
// 1 not definitely assigned

b
// i not definitely assigned

}
static void G(int x, int y) {
int i;
if (x>=0 1] (1 =y) >=0) {
// 1 not definitely assigned
else {
// i1 definitely assigned
3
) // i1 not definitely assigned

}

thevariable i is considered definitely assigned in one of the embedded statements of an if statement but not
in the other. In the i f statement in the F method, the variable i is definitely assigned in the first embedded
statement because execution of the expression (i = y) aways precedes execution of this embedded
statement. In contrast, the variable i is not definitely assigned in the second embedded statement since the
variable i may be unassigned. Specifically, the variable i is unassigned if the value of the varigble x is
negative. Similarly, in the G method, the variable i is definitely assigned in the second embedded statement
but not in the first embedded statement.

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 71

C# LANGUAGE REFERENCE

72

5.3.1 Initially assigned variables
The following categories of variables are classified as initialy assigned:

Static variables.

Instance variables of class instances.

Instance variables of initially assigned struct variables.
Array elements.

Value parameters.

Reference parameters.

5.3.2 Initially unassigned variables
The following categories of variables are classified as initialy unassigned:

Instance variables of initially unassigned struct variables.
Output parameters, including the this variable of struct constructors.
Local variables.

5.4 Variable references

A variable-reference isan expression that is classified as a variable. A variable-reference denotes a storage
|ocation that can be accessed both to fetch the current value and to store anew value. In C and C++, a
variable-reference is known asan lvalue.

variable-reference;
expression

The following constructs require an expression to be a variable-reference:
The left hand side of an assignment (which may aso be a property access or an indexer access).

An argument passed asa ref or out parameter in a method or constructor invocation.

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

6. Conversions

6.1 Implicit conversions
The following conversions are classified asimplicit conversions:

| dentity conversions

Implicit numeric conversions

Implicit enumeration conversions.
Implicit reference conversions

Boxing conversions

Implicit constant expression conversions
User-defined implicit conversions

Implicit conversions can occur in avariety of situations, including function member invocations (87.4.3),
cast expressions (87.6.8), and assignments (87.13).

The pre-defined implicit conversions always succeed and never cause exceptions to be thrown. Properly
designed user-defined implicit conversions should exhibit these characteristics aswell.

6.1.1 Identity conversion

An identity conversion converts from any type to the same type. This conversion exists only such that an
entity that already has a required type can be said to be convertible to that type.

6.1.2 Implicit numeric conversions
The implicit numeric conversions are:

From sbyte to short, int, long, float, double, or decimal.

From byte to short, ushort, int, uint, long, ulong, float, double, of decimal.
From shortto int, long, float, double, or decimal.

From ushortto int, uint, long, ulong, float,double, or decimal.

From int to long, float, double, or decimal.

Fromuintto long, ulong, float, double, or decimal.

From longto float, double, or decimal.

From ulong to float,double, or decimal.

From char to ushort, int,uint, long, ulong, float, double, or decimal.

From floatto double.

Conversonsfrom int, uint, or long to float and from long to double may cause aloss of precision,
but will never cause aloss of magnitude. The other implicit numeric conversions never lose any
information.

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 73

C# LANGUAGE REFERENCE

There are no implicit conversions to the char type. Thisin particular means that values of the other
integral types do not automatically convert to thechar type.

6.1.3 Implicit enumeration conversions
An implicit enumeration conversion permits the decimal-integer -literal 0 to be converted to any enumtype

6.1.4 Implicit reference conversions
The implicit reference conversions are:

From any reference-typeto object.

From any class-type S to any classtypeT, provided S isderived from T.

From any class-type S to any interface-type T, provided S implements T.

From any interface-types to any interface-type T, provided S isderived from T.

Froman array-type S with an element type Seto an array-type T with an element type Te, provided all
of the following are true:

S and T differ only in element type. In other words, S and T have the same number of dimensions.
Both Se and Te are reference-types.

Animplicit reference conversion exists from Sg to Te.

From any array-type to System.Array.

From any delegate-typeto System.Delegate.

From any array-type or del egate-type to System. ICIoneable.

From the null typeto any reference-type.

Theimplicit reference conversions are those conversions between reference-types that can be proven to
always succeed, and therefore require no checks at rurttime.

Reference conversions, implicit or explicit, never change the referentia identity of the object being
converted. In other words, while a reference conversion may change the type of avalue, it never changes
the value itsdlf.

6.1.5 Boxing conversions

A boxing conversion permits any value-type to be implicitly converted to the type object or to any
interface-type implemented by the value-type. Boxing a value of a value-typeconsists of alocating an
object instance and copying the value-type value into that instance.

Boxing conversions are further described in 84.3.1.

6.1.6 Implicit constant expression conversions
Animplicit constant expression conversion permits the following conversions:

A constant-expression (87.15) of type int can be converted to type sbyte, byte, short, ushort,
uint, or ulong, provided the value of the constant-expression iswithin the range of the destination

type.

A constant-expression of type long can be converted to type ulong, provided the value of the
constant-expression is not negetive.

74 Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

6.1.7 User-defined implicit conversions

A user-defined implicit conversion consists of an optional standard implicit conversion, followed by
execution of a user-defined implicit conversion operator, followed by another optiona standard implicit
conversion. The exact rules for evaluating user-defined conversions are described in 86.4.3.

6.2 Explicit conversions
The following conversions are classified asexplicit conversions.

All implicit conversions.
Explicit numeric conversions.
Explicit enumeration conversions.
Explicit reference conversions.
Explicit interface conversions.
Unboxing conversions.
User-defined explicit conversions.
Explicit conversions can occur in cast expressions (87.6.8).

The explicit conversions are conversions that cannot be proved to always succeed, conversions that are
known to possibly lose information, and conversions across domains of types sufficiently different to merit
explicit notation.

The set explicit conversionsincludes al implicit conversions. Thisin particular means that redundant cast
expressions are allowed.

6.2.1 Explicit numeric conversions

The explicit numeric conversions are the conversions from a numeric-type to another numeric-type for
which an implicit numeric conversion (86.1.2) does not already exist:

From sbyte to byte, ushort, uint, ulong, or char.

From byte to sbyte and char.

From short to sbyte, byte, ushort, uint, ulong, or char.

From ushortto sbhyte, byte, short, or char.

From int to shyte, byte, short, ushort, uint,ulong, or char.

Fromuintto shyte, byte, short, ushort, int, or char.

From long to shyte, byte, short, ushort, int,uint, ulong, or char.

From ulong to sbyte, byte, short, ushort, int,uint, long, oOr char.

From char to sbyte, byte, or short.

From float to sbyte, byte, short, ushort, int, uint, long, ulong, char, or decimal.
From double to sbyte, byte, short, ushort, int, uint, long,ulong, char, float, or decimal.

From decimal to sbyte, byte, short, ushort, int, uint, long, ulong, char, float, ordouble.

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 75

C# LANGUAGE REFERENCE

76

Because the explicit conversions include al implicit and explicit numeric conversions, it is always possible
to convert from any numeric-type to any other numeric-type using a cast expression (87.6.8).

The explicit numeric conversions possibly lose information or possibly cause exceptions to be thrown. An
explicit numeric conversion is processed as follows:

For a conversion from an integra type to another integral type, the processing depends on the overflow
checking context (87.5.13) in which the conversion takes place:

In achecked context, the conversion succeeds if the source argument is within the range of the

degtination type, but throws an OverflowException if the source argument is outside the range of
the destination type.

Inan unchecked context, the conversion always succeeds, and simply consists of discarding the most
significant bits of the source value.

For a conversion from float, double, or decimal to an integra type, the source value is rounded
towards zero to the nearest integral value, and this integral value becomes the result of the conversion.
If the resulting integral value is outside the range of the destination type, an OverflowException is
thrown.

For a converson from double to float, thedouble vaue is rounded to the nearest float vaue. If
the double valueistoo small to represent as a float, the result becomes positive zero or negative
zero. If the double valueistoo large to represent as a float, the result becomes positive infinity or
negative infinity. If thedouble vaueis NaN, the result isaso NaN.

For aconversion from float or double to decimal, the source value is converted to decimal
representation and rounded to the nearest number after the 28" decimal placeif required (§4.1.6). If the
source value istoo small to represent as a decimal, the result becomes zero. If the source valueis NaN,
infinity, or too large to represent as a decimal, an Inval idCastException isthrown.

For a conversion from decimal to float or double, the decimal value is rounded to the nearest

double or float vaue. Whilethis converson may lose precision, it never causes an exception to be
thrown.

6.2.2 Explicit enumeration conversions
The explicit enumeration conversions are:

From sbyte, byte, short, ushort, int, uint, long,ulong, char, float, double, or decimal to
any enum-type.

From any enum-type to sbyte, byte, short,ushort, int, uint, long, ulong, char, float,
double, or decimal.

From any enum-type to any other enum-type.

An explicit enumeration conversion between two types is processed by treating any participating enumtype
as the underlying type of that enum-type, and then performing an implicit or explicit numeric conversion
between the resulting types. For example, given an enum-type E with and underlying type of int, a
conversion from E to byte is processed as an explicit numeric conversion (86.2.1) from intto byte, and
aconverson from byte to E is processed as an implicit numeric conversion (86.1.2) from byte to int.

6.2.3 Explicit reference conversions
The explicit reference conversions are:

From object to any reference-type.

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

From any class-type S to any classtypeT, provided S is abase class of T.

From any class-type S to any interface-type T, provided S is not sealed and provided S does not
implement T.

From any interface-types to any class-type T, provided T is hot sealed or provided T implements S.
From any interface-types to any interface-type T, provided S isnot derived from T.

Froman array-type S with an eement type Seto an array-type T with an element type Te, provided al
of the following are true;

S and T differ only in element type. In other words, S and T have the same number of dimensions.
Both Se and Te are reference-types.

An explicit reference conversion exists from Sg to Te.

From System.Array to any array-type

From System.Delegate to any delegate-type.

From System. ICloneable to any array-type or delegate-type.

The explicit reference conversions are those conversions between reference-types that require run-time
checksto ensure they are correct.

For an explict reference conversion to succeed at run-time, the value of the source argument must be nul i
or the actual type of the object referenced by the source argument must be atype that can be converted to
the destination type by an implicit reference conversion (86.1.4). If an explicit reference conversion fails,
an InvalidCastException isthrown.

Reference conversions, implicit or explicit, never change the referentia identity of the object being
converted. In other words, while a reference conversion may change the type of avalue, it never changes
the value itself.

6.2.4 Unboxing conversions

An unboxing conversion permits an explicit conversion from type object to any valuetype or from any
interface-type to any value-type that implements the interface-type. An unboxing operation consists of first
checking that the object instance is a boxed vaue of the given value-type, and then copying the value out of
the instance.

Unboxing conversions are further described in 84.3.2

6.2.5 User-defined explicit conversions

A user-defined explicit conversion consists of an optional standard explicit conversion, followed by
execution of a user-defined implicit or explicit conversion operator, followed by another optional standard
explicit conversion. The exact rules for evaluating user-defined conversions are described in 86.4.4

6.3 Standard conversions

The standard conversions are those pre-defined conversions that can occur as part of a user-defined
conversion.

6.3.1 Standard implicit conversions
The following implicit conversions are classified as standard implicit conversions:

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 77

C# LANGUAGE REFERENCE

78

Identity conversions (86.1.1)
Implicit numeric conversions (86.1.2)
Implicit reference conversions (86.1.4)
Boxing conversions (86.1.5)
Implicit constant expression conversions (86.1.6)
The standard implicit conversions specificaly exclude user-defined implicit conversions.

6.3.2 Standard explicit conversions

The standard explicit conversions are al standard implicit conversions plus the subset of the explicit
conversions for which an opposite standard implicit conversion exists. In other words, if a standard implicit
conversion exists from atype A to atype B, then a standard explicit conversion exists from type A to type B
and from type B to type A.

6.4 User-defined conversions

C# dlows the pre-defined implicit and explicit conversions to be augmented by user-defined conversions.
User-defined conversions are introduced by declaring conversion operators (§10.9.3) in class and struct
types.

6.4.1 Permitted user-defined conversions

C# permits only certain user-defined conversions to be declared. In particular, it is not possible to redefine
an aready existing implicit or explicit conversion. A class or struct is permitted to declare a conversion
from a source type S to atarget type T only if al of the following are true:

S and T are different types.
Either S or T isthe class or struct type in which the operator declaration takes place.
Neither S nor T isobject or an interface-type.
T isnot abaseclassof S,and S isnot abase classof T.
The regtrictions that apply to user-defined conversions are discussed further in 810.9.3.

6.4.2 Evaluation of user-defined conversions

A user-defined conversion converts a value from its type, called the source type, to another type, called the
target type. Evauation of a user-defined conversion centers on finding the most specific user-defined
conversion operator for the particular source and target types. This determination is broken into severa
steps:

Finding the set of classes and structs from which user-defined conversion operators will be considered.
This set consists of the source type and its base classes and the target type and its base classes (with the
implicit assumptions that only classes and structs can declare user-defined operators, and that non-class
types have no base classes).

From that set of types, determining which user-defined conversion operators are applicable. For a
conversion operator to be applicable, it must be possible to perform a standard conversion (86.3) from
the source type to the argument type of the operator, and it must be possible to perform a standard
conversion from the result type of the operator to the target type.

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

From the set of applicable user-defined operators, determining which operator is unambiguously the
most specific. In genera terms, the most specific operator is the operator whose argument typeis
“closest” to the source type and whose result type is “closest” to the target type. The exact rules for
establishing the most specific user-defined conversion operator are defined in the following sections.

Once amost specific user-defined conversion operator has been identified, the actual execution of the user-
defined conversion involves up to three steps:

First, if required, performing a standard conversion from the source type to the argument type of the
user-defined conversion operator.

Next, invoking the user-defined conversion operator to perform the conversion.

Findly, if required, performing a standard conversion from the result type of the user-defined
conversion operator to the target type.

Evaluation of a user-defined conversion never involves more than one user-defined conversion operator. In
other words, a conversion from type S to type T will never first execute a user-defined conversion from s to
X and then execute a user-defined conversion from X to T.

Exact definitions of evaluation of user-defined implicit or explicit conversions are given in the following
sections. The definitions make use of the following terms:

If astandard implicit conversion (86.3.1) exists from atype A to atype B, and if neither A nor B are
interface-types, then A is said to be encompassed by B, and B is said to encompass A.

The most encompassing type in a set of typesisthe one type that encompasses all other typesin the set.
If no single type encompasses al other types, then the set has no most encompassing type. In more
intuitive terms, the most encompassing type is the “largest” type in the set—the one type to which each
of the other types can be implicitly converted.

The most encompassed type in a set of types is the one type that is encompassed by all other typesin the
sat. If no single type is encompassed by all other types, then the set has no most encompassed type. In
more intuitive terms, the most encompassed type is the “smallest” type in the sst—the one type that can
be implicitly converted to each of the other types.

6.4.3 User-defined implicit conversions
A user-defined implicit conversion from type S to type T is processed as follows:

Find the set of types, D, from which user-defined conversion operators will be considered. This set
congsts of S (if S isaclassor struct), the base classes of S (if Sisaclass), T (if T isaclass or struct),
and the base classes of T (if Tisaclass).

Find the set of applicable user-defined conversion operators, U. This set consists of the user-defined
implicit conversion operators declared by the classes or structsin D that convert from atype
encompassing S to atype encompassed by T. If U is empty, the conversion is undefined and an error
OCCurs.

Find the most specific source type, Sx, of the operatorsin U:
If any of the operatorsin U convert from S, then Sx isS.

Otherwise, Sx is the most encompassed type in the combined set of source types of the operatorsin U. If
no most encompassed type can be found, then the conversion is ambiguous and an error occurs.

Find the most specific target type, Tx, of the operatorsin U:

If any of the operatorsin U convertto T, then TxisT.

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 79

C# LANGUAGE REFERENCE

Otherwise, Tx is the most encompassing type in the combined set of target types of the operatorsin u. If
no most encompassing type can be found, then the conversion is ambiguous and an error occurs.

If U contains exactly one user-defined conversion operator that converts from Sx to Tx, then thisis the
most specific conversion operator. If no such operator exists, or if more than one such operator exists,
then the conversion is ambiguous and an error occurs. Otherwise, the user-defined conversion is

applied:
If S isnot Sx, then astandard implicit conversion from S to Sx is performed.
The most specific user-defined conversion operator is invoked to convert from Sx to Tx.

If Tx isnot T, then astandard implicit conversion from Txto T is performed.

6.4.4 User-defined explicit conversions
A user-defined explicit conversion from type S to typeT is processed as follows:

Find the set of types, D, from which user-defined conversion operators will be considered. This set
congists of S (if S isaclass or struct), the base classesof S (if Sisaclass), T (if T isaclass or struct),
and the base classes of T (if Tisaclass).

Find the set of applicable user-defined conversion operators, U. This set consists of the user-defined
implicit or explicit conversion operators declared by the classes or structsin D that convert from atype
encompassing or encompassed by S to a type encompassing or encompassed by T. If Uisempty, the
conversion is undefined and an error occurs.

Find the most specific source type, Sx, of the operatorsin U:
If any of the operatorsin U convert from S, then Sx isS.

Otherwise, if any of the operatorsin U convert from types that encompass S, then Sx is the most
encompassed type in the combined set of source types of those operators. If no most encompassed type
can be found, then the conversion is ambiguous and an error occurs.

Otherwise, Sx isthe most encompassing type in the combined set of source types of the operatorsin u. If
no most encompassing type can be found, then the conversion is ambiguous and an error occurs.

Find the most specific target type, Tx, of the operatorsin U:
If any of the operatorsin U convertto T, then Tx iST.

Otherwisg, if any of the operatorsin U convert to types that are encompassed by T, then Tx is the most
encompassing type in the combined set of source types of those operators. If no most encompassing
type can be found, then the conversion is ambiguous and an error occurs.

Otherwise, Txisthe most encompassed type in the combined set of target types of the operatorsin U. If
no most encompassed type can be found, then the conversion is ambiguous and an error occurs.

If U contains exactly one user-defined conversion operator that converts from Sx to Tx, then thisisthe
most specific conversion operator. If no such operator exists, or if more than one such operator exists,
then the conversion is ambiguous and an error occurs. Otherwise, the user-defined conversion is

applied:
If S isnot Sx, then astandard explicit conversion from S to Sx is performed.
The most specific user-defined conversion operator is invoked to convert from Sx to Tx.

If Tx isnot T, then astandard explicit conversion from Txto T is performed.

80 Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

7. Expressions

An expression is a sequence of operators and operands that specifies a computation. This chapter defines
the syntax, order of evaluation, and meaning of expressions.

7.1 Expression classifications
An expression is classified as one of the following:

A vdue. Every value has an associated type.
A variable. Every variable has an associated type, ramely the declared type of the variable.

A namespace. An expression with this classification can only appear as the left hand side of a member -
access (87.5.4). In any other context, an expression classified as a namespace causes an error.

A type. An expression with this classification can only appear as the left hand side of a member-access
(87.5.4). In any other context, an expression classified as atype causes an error.

A method group, which is a set of overloaded methods resulting from a member lookup (87.3). A
method group may have associated instance expression. When an instance method is invoked, the result
of evaluating the instance expression becomes the instance represented by this (87.5.7). A method
group is only permitted in an invocation-expression (87.5.5) or adelegate-creation-expression
(87.5.10.3). In any other context, an expression classified as a method group causes an error.

A property access. Every property access has an associated type, namely the type of the property. A
property access may furthermore have an associated instance expression. When an accessor (the get or
set block) of an instance property access is invoked, the result of evaluating the instance expression
becomes the instance represented by this (87.5.7).

An event access. Every event access has an associated type, namely the type of the event. An event
access may furthermore have an associated instance expression. An event access may appear as the left
hand operand of the += and -= operators (§7.13.3). In any other context, an expression classified asan
event access calses an error.

An indexer access. Every indexer access has an associated type, namely the element type of the indexer.
Furthermore, an indexer access has an associated instance expression and an associated argument list.
When an accessor (theget or set block) of an indexer access isinvoked, the result of evaluating the
instance expression becomes the instance represented by this (87.5.7), and the result of evaluating the
argument list becomes the parameter list of the invocation.

Nothing. This occurs when the expression is an invocation of a method with a return type of void. An
expression classified as nothing is only valid in the context of astatement-expression (§8.6).

The final result of an expression is never a namespace, type, method group, or event access. Rather, as
noted above, these categories of expressions are intermediate constructs that are only permitted in certain

contexts.

A property access or indexer accessis aways reclassified as a value by performing an invocation of the
get-accessor or the set-accessor. The particular accessor is determined by the context of the property or

indexer access: If the access is the target of an assignment, the set-accessor is invoked to assign a new
value (87.13.1). Otherwise, the get-accessor is invoked to obtain the current value (87.1.1).

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 81

C# LANGUAGE REFERENCE

82

7.1.1 Values of expressions

Mogt of the congtructs that involve an expression ultimately require the expression to denote avalue. In
such cases, if the actua expression denotes a namespace, a type, a method group, or nothing, an error
occurs. However, if the expression denotes a property access, an indexer access, or a variable, the value of
the property, indexer, or variable is implicitly substituted:

The value of avariable is simply the value currently stored in the storage location identified by the
variable. A variable must be considered definitely assigned (85.3) before its value can be obtained, or
otherwise a compile-time error occurs.

The value of a property access expression is obtained by invoking the get-accessor of the property. If
the property has no get-accessor, an error occurs. Otherwise, a function member invocation (87.4.3) is
performed, and the result of the invocation becomes the value of the property access expression.

The value of an indexer access expression is obtained by invoking the get-accessor of theindexer. If the
indexer has no get-accessor, an error occurs. Otherwise, a function member invocation (87.4.3) is
performed with the argument list associated with the indexer access expression, and the result of the
invocation becomes the value of the indexer access expression.

7.2 Operators

Expressions are constructed from operands and operators. The operators of an expression indicate which

operations to apply to the operands. Examples of operatorsinclude +, -, *, /7, and new. Examples of
operands include literds, fields, local variables, and expressions.

There are three types of operators.

Unary operators. The unary operators take one operand and use either prefix notation (such as —x) or
postfix notation (such as x++).

Binary operators. The binary operators take two operands and all use infix notation (such asx +vy).

Ternary operator. Only one ternary operator, ?:, exists. The ternary operator takes three operands and
uses infix notation (c? x: y).

The order of evaluation of operabors in an expression is determined by the precedence and associativity of
the operators (87.2.1).

Certain operators can be overloaded. Operator overloading permits user-defined operator implementations
to be specified for operations where one or both of the operands are of a user-defined class or struct type
(87.2.2).

7.2.1 Operator precedence and associativity

When an expression contains multiple operators, the precedence of the operators control the order in which
theindividual operators are evaluated. For example, the expression x +y * z isevaluated asx + (y * z)
because the * operator has higher precedence than the + operator. The precedence of an operator is
established by the definition of its associated grammar production. For example, an additive-expression
consists of a sequence of multiplicative-expressions separated by + or - operators, thus giving the+ and -
operators lower precedence than the *, 7, and % operators.

The following table summarizes all operatorsin order of precedence from highest to lowest:

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

Se Category Operators

cti

on

75 Primary xX) x.y FT(x) a[x] x++ Xx-- new
typeof sizeof checked unchecked

7.6 Unary + - 1~ 44+x --x (T)x

17 Multiplicative * /%

7.7 Additive + -

7.8 Shift << >>

79 Relational < > <= >= 1is

79 Equality = I=

71 Logical AND &

0

7.1 Logicd XOR n

0

7.1 Logical OR |

0

7.1 Conditional &&

1 AND

7.1 Conditional 11

1 OR

71 Conditional ?:

2

7.1 Assignment = *z= [z %= += -= <<= >>= &= = |=

3

When an operand occurs between two operators with the same precedence, theassociativity of the
operators controls the order in which the operations are performed:

Except for the assignment operators, al binary operators are |eft-associative, meaning that operations
are performed from left to right. For example, x + y + z isevauated as (x +y) + z

The assignment operators and the conditional operator (?:) are right-associative, meaning that
operations are performed from right to left. For example, x =y = zisevauated as x = (y = 2).

Precedence and associativity can be controlled using parentheses. For example, x + y * z first multiplies y
by z and then adds the result to x, but (x +y) * z first adds x and y and then multiplies the result by z.

7.2.2 Operator overloading

All unary and binary operators have predefined implementations that are automatically available in any
expression. In addition to the predefined implementations, user-defined implementations can be introduced
by including operator declarations in classes and structs (810.9). User-defined operator implementations
always take precedence over predefined operator implementations. Only when no applicabl e user-defined
operator implementations exist will the predefined operator implementations be considered.

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 83

C# LANGUAGE REFERENCE

84

The overloadable unary operators are:

+ - ! ~ ++ - true false
The overloadable binary operatorsare:
+ - * /% & | N > == I= > < > <=

Only the operators listed above can be overloaded. In particular, it is not possible to overload member
access, method invocation, or the =, &&, | |, ?:, new, typeof, sizeof, and is operators.

When an binary operator isoverloaded, the corresponding assignment operator is also implicitly overloaded.
For example, an overload of operator * is aso an overload of operator *=. Thisis described further in §7.13.
Note that the assignment operator itself (=) cannot be overloaded. An assignment always performs asimple
bit-wise copy of avaueinto avariable.

Cast operations, such as (T)x, are overloaded by providing user-defined conversions (86.4).

Element access, such as a[x], is hot considered an overloadable operator. Instead, user-defined indexing is
supported through indexers (§10.8).

In expressions, operators are referenced using operator notation, and in declarations, operators are
referenced using functional notation. The following table shows the relationship between operator and
functional notations for unary and binary operators. In the first entry, op denotes any overloadable unary
operator. In the second entry, op denotes the unary ++ and -- operators. In the third entry, op denotes any
overloadable binary operator.

Oper ator Functional notation
notation

op x operator op(x)

X op operator op(x)
XO0py operator op(x, y)

User-defined operator declarations always require at least one of the parameters to be of the class or struct
type that contains the operator declaration. Thus, it is not possible for a user-defined operator to have the
same signature as a predefined operator.

User-defined operator declarations cannot modify the syntax, precedence, or associativity of an operator.
For example, the * operator is always a binary operator, always has the precedence level specified in §7.2.1,
and is always left-associative.

Whileit is possible for a user-defined operator to perform any computation it pleases, implementations that
produce results other than those that are intuitively expected are strongly discouraged. For example, an
implementation of operator == should compare the two operands for equality and return an appropriate
result.

The descriptions of individual operatorsin 87.5 through 87.13 specify the predefined implementations of
the operators and any additional rules that apply to each operator. The descriptions make use of the terms
unary operator overload resolution, binary operator overload resolution, and numeric promotion,
definitions of which are found in the following sections.

7.2.3 Unary operator overload resolution

An operation of the form op x or x op, where op is an overloadable unary operator, and x is an expression
of type X, is processed as follows:

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

The set of candidate user-defined operators provided by X for the operation operator op(x) is
determined using the rules of §7.2.5.

If the set of candidate user-defined operators is not empty, then this becomes the set of candidate
operators for the operation. Otherwise, the predefined unary operator op implementations become
the set of candidate operators for the operation. The predefined implementations of a given operator are
specified in the description of the operator (§7.5 and §7.6).

The overload resolution rules of 8§7.4.2 are applied to the set of candidate operators to select the best
operator with respect to the argument list (x), and this operator becomes the result of the overload
resolution process. If overload resolution fails to select a single best operator, an error occurs.

7.2.4 Binary operator overload resolution

An operation of the form x op y, where op is an overloadable binary operator, x isan expression of type X,
and y is an expression of type Y, is processed as follows:

The set of candidate user-defined operators provided by X and Y for the operation operator op(x, y)
is determined. The set consists of the union of the candidate operators provided by X and the candidate
operators provided by Y, each determined using the rules of §7.2.5. If X and Y are the sametype, or if X
and Y are derived from a common base type, then shared candidate operators only occur in the
combined set once.

If the set of candidate user-defined operators is not empty, then this becomes the set of candidate
operators for the operation. Otherwise, the predefined binary operator op implementations become
the set of candidate operators for the operation. The predefined implementations of a given operator are
specified in the description of the operator (87.7 through 8§7.13).

The overload resolution rules of §7.4.2 are applied to the set of candidate operators to select the best
operator with respect to the argument list (x, y), and this operator becomes the result of the overload
resolution process. If overload resolution fails to select a single best operator, an error occurs.

7.2.5 Candidate user-defined operators

Given atype T and an operation operator op(A), where op is an overloadable operator and A isan

argument list, the set of candidate user-defined operators provided by T for operator op(A) isdetermined
asfollows:

For al operator op declarationsin T, if at least one operator is applicable (87.4.2.1) with respect to
the argument list A, then the set of candidate operators consists of all applicable operator op
declarationsin T.

Otherwise, if T isobject, the set of candidate operatorsis empty.

Otherwise, the set of candidate operators provided by T is the set of candidate operators provided by the
direct base class of T.

7.2.6 Numeric promotions

Numeric promotion consists of automatically performing certain implicit conversions of the operands of the
predefined unary and binary numeric operators. Numeric promotion is not a distinct mechanism, but rather
an effect of applying overload resolution to the predefined operators. Numeric promotion specifically does
not affect evaluation of user-defined operators, although user-defined operators can be implemented to
exhibit similar effects.

As an example of numeric promotion, consider the predefined implementations of the binary * operator:

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 85

C# LANGUAGE REFERENCE

86

int operator *(int x, int y);

uint operator *(uint x, uint y);

long operator *(long x, long y);

ulong operator *(ulong x, ulong y);

float operator *(float x, float y);

double operator *(double x, double y);

decimal operator *(decimal x, decimal y);

When overload resolution rules (87.4.2) are applied to this set of operators, the effect is to sdect the first of
the operators for which implicit conversions exist from the operand types. For example, for the operation b
* s, wherebisabyte and s isa short, overload resolution salects operator *(int, int) asthe best
operator. Thus, the effect is that band s are converted to int, and the type of theresult is int. Likewise,
for the operation i * d, where i isan int and d isa double, overload resolution selects operator

*(double, double) asthe best operator.

7.2.6.1 Unary numeric promotions

Unary numeric promation occurs for the operands of the predefined +, —, and ~ unary operators. Unary
numeric promotion simply consists of converting operands of type sbyte, byte, short, ushort, or char
to type int. Additionaly, for the unary — operator, unary numeric promotion converts operands of type
uint totype long.

7.2.6.2 Binary numeric promotions

Binary numeric promotion occurs for the operands of the predefined +,—, *, /7, %, &, |, ==, 1=, >, <, >=,
and <= binary operators. Binary humeric promotion implicitly converts both operands to a common type
which, in case of the non-relational operators, also becomes the result type of the operation. Binary numeric
promotion consists of applying the following rules, in the order they appear here:

If either operand is of type decimal, the other operand is converted to type decimal, or an error
occursiif the other operand is of type float or double.

Otherwise, if either operand is of type double, the other operand is converted to type doubl e.
Otherwisg, if either operand is of type float, the other operand is converted to type float.

Otherwise, if either operand is of type ulong, the other operand is converted to type ullong, or an error
occursif the other operand is of type sbyte, short, int, or long.

Otherwiseg, if either operand is of type long, the other operand is converted to type long.

Otherwise, if either operand is of type uint and the other operand is of type sbyte, short, or int,
both operands are converted to type long.

Otherwise, if either operand is of type uint, the other operand is converted to type uint.
Otherwise, both operands are converted to type int.

Note that the firgt rule disallows any operations that mix thedecimal type with the double and float
types. The rule follows from the fact that there are no implicit conversions between the decimal type and
the double and float types.

Also note that it is not possible for an operand to be of typeulong when the other operand is of a signed
integra type. The reason is that no integral type exists that can represent the full range of ulong aswell as
the signed integra types.

In both of the above cases, a cast expression can be used to explicitly convert one operand to atypethat is
compatible with the other operand.

In the example

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

decimal AddPercent(decimal x, double percent) {
return x * (1.0 + percent / 100.0);
}

a compile-time error occurs because adecimal cannot be multiplied by adouble. The error isresolved
by explicitly converting the second operand to decimal :

decimal AddPercent(decimal x, double percent) {
return x * (decimal)(1.0 + percent / 100.0);
}

7.3 Member lookup

A member lookup is the process whereby the meaning of a name in the context of atypeisdetermined. A
member lookup may occur as part of evaluating a simple-name (87.5.2) or amember-access (87.5.4) in an
expression.

A member lookup of anameN inatypeT is processed as follows:

First, the set of all accessible (§3.3) members named N declared in T and the base types (8§7.3.1) of T is
constructed. Declarations that include an override modifier are excluded from the set. If no members
named N exist and are accessible, then the lookup produces no match, and the following steps are not
evauated.

Next, members that are hidden by other members are removed from the set. For every member S_Min
the set, where S in the type in which the member M is declared, the following rules are applied:

If M isaconstant, field, property, event, type, or enumeration member, then al members declared in a
base type of S are removed from the set.

If M isamethod, then dl non-method members declared in a base type of S are removed from the s,
and al methods with the same signature as M declared in a base type of S are removed from the set.

Findly, having removed hidden members, the result of the lookup is determined:
If the set consists of a single non-method member, then this member is the result of the lookup.
Otherwise, if the set containsonly methods, then this group of methods is the result of the lookup.

Otherwise, the lookup is ambiguous, and a compile-time error occurs (this situation can only occur for a
member lookup in an interface that has multiple direct base interfaces).

For member lookups in types other than interfaces, and member lookups in interfaces that are strictly
sgngle-inheritance (each interface in the inheritance chain has exactly zero or one direct base interface), the
effect of the lookup rulesis simply that derived members hide base members with the same name or
signature. Such single-inheritance lookups are never ambiguous. The ambiguities that can possibly arise
from member lookups in multiple-inheritance interfaces are described in §13.2.5.

7.3.1 Base types
For purposes of member lookup, atype T is considered to have the following base types:

If Tisobject, then T has no base type.

If T isavaluetype, the base type of T isthe classtypeobject.

If T isaclasstype, the base types of T are the base classes of T, including the class type object.
If T isan interface-type, the base types of T are the base interfaces of T and the classtypeobject.
If T isan array-type, the base types of T are the classtypes System.Array and object.

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 87

C# LANGUAGE REFERENCE

If T isadelegate-type, the base types of T arethe classtypes System.Delegate and object.

7.4 Function members

Function members are members that contain executable statements. Function members are always members
of types and cannot be members of namespaces. C# defines the following five categories of function
members:

Constructors

Methods

Properties

Indexers

User-defined operators

The statements contained in function members are executed through function member invocations. The
actual syntax for writing a function member invocation depends on the particular function member category.
However, all function member invocations are expressions, allow arguments to be passed to the function
member, and alow the function member to compute and return a result.

The argument list (§87.4.1) of afunction member invocation provides actual values or variable references
for the parameters of the function member.

Invocations of constructors, methods, indexers, and operators employ overload resolution to determine
which of a candidate set of function members to invoke. This processis described in §7.4.2.

Once a particular function member has been identified at compile-time, possibly through overload
resolution, the actua run-time process of invoking the function member is described in §7.4.3

The following table summarizes the processing that takes place in constructs involving the five categories
of function members. In thetable, e, x, y, and value indicate expressions classified as variables or values,
T indicates an expression classified as atype, F isthe smple name of amethod, and P is the simple name of
a property.

Constru Example Description

ct

Construc new T(x, y) Overload resolution is applied to select the best

tor constructor in the class or struct T. The constructor is

invocati invoked with the argument list (x, y).

on

Method F(X, ¥) Overload resolution is applied to sdect the best method F

invocati in the containing class or struct. The method is invoked

on with the argument list (x, y). If the method is not
static, theinstance expressionis this.

T.F(X, y) Overload resolution is applied to select the best method F
in the class or struct T. An error occurs if the method is not
static. The method is invoked with the argument list
o, ¥).

88 Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

Constru
ct

Example

Description

e.F(x, ¥)

Overload resolution is applied to select the best method F
in the class, struct, or interface given by the type of e. An
error occursif the method is static. The method is
invoked with the instance expression e and the argument

list (x, y).

Property
access

The get accessor of the property P in the containing class
or struct isinvoked. An error occurs if P iswrite-only. If P
isnot static, the instance expression is this.

P = value

The set accessor of the property P in the containing class
or gruct isinvoked with the argument list (value). An
error occursif P isread-only. If P isnot static, the
instance expression is this.

The get accessor of the property P in the class or struct T
isinvoked. An error occursif P isnot staticorif P is
write-only.

T.P =value

The set accessor of the property P in the class or struct T
isinvoked with the argument list (value). An error
occursif P isnot static orif P isreadonly.

The get accessor of the property P in the class, struct, or
interface given by the type of e isinvoked with the
instance expression e. An error occursif P isstatic or if
P iswrite-only.

e.P =value

The set accessor of the property P in the class, struct, or
interface given by the type of e isinvoked with the
instance expression e and the argument list (value). An
error occursif P isstatic or if P isread-only.

Indexer
access

e[x, vyl

Overload resolution is applied to select the best indexer in
the class, struct, or interface given by the type of e. The
get accessor of the indexer isinvoked with the instance
expression e and the argument list (x, y). An error
occursif the indexer iswrite-only.

e[x, yl=
value

Overload resolution is applied to select the best indexer in
the class, struct, or interface given by the type of e. The
set accessor of the indexer is invoked with the instance
expression e and the argument list (x, y, value). An
error occurs if the indexer is read-only.

Operator
invocati
on

Overload resolution is applied to select the best unary
operator in the class or struct given by the type of x. The
selected operator is invoked with the argument list (x).

Xty

Overload resolution is applied to select the best binary
operator in the classes or structs given by the types of x
and y. The selected operator is invoked with the argument
list (x, y).

Copyright O Microsoft Corporation1999-2000. All Rights Reserved.

89

C# LANGUAGE REFERENCE

7.4.1 Argument lists

Every function member invocation includes an argument list which provides actual vaues or variable
references for the parameters of the function member. The syntax for specifying the argument list of a
function member invocation depends on the function member category:

For congtructors, methods, and delegates, the arguments are specified as an argument-list, as described
below.

For properties, the argument list is empty when invoking the get accessor, and consists of the
expression specified as the right operand of the assignment operator when invoking the set accessor.

For indexers, the argument list consists of the expressions specified between the square brackets in the
indexer access. When invoking the set accessor, the argument list additionally includes the expression
specified as the right operand of the assignment operator.

For user-defined operators, the argument list consists of the single operand of the unary operator or the
two operands of the binary operator.

The arguments of properties, indexers, and user-defined operators are always passed as value parameters
(810.5.1.1). Reference and output parameters are not supported for these categories of function members.

The arguments of a constructor, method, or delegate invocation are specified as an argument-list:

argument-list:
argument
argument-list , argument

argument;
expression
ref variable-reference
out variable-reference

An argument-list consists of zero or more arguments, separated by commas. Each argument can take one of
the following forms:

An expression, indicating that the argument is passed as a value parameter (810.5.1.1).

Thekeyword ref followed by avariablereference(85.4), indicating that the argument is passed as a
reference parameter (810.5.1.2). A variable must be definitely assgned (85.3) before it can be passed
as areference parameter.

The keyword out followed by avariablereference(85.4), indicating that the argument is passed as an
output parameter (§10.5.1.3). A variable is considered definitely assigned (85.3) following a function
member invocation in which the variable is passed as an output parameter.

During the run-time processing of a function member invocation (87.4.3), the expressions or varigble
references of an argument list are evaluated in order, from left to right, as follows:

For avalue parameter, the argument expression is evaluated and an implicit conversion (86.1) to the
corresponding parameter type is performed. The resulting value becomes the initial value of the value
parameter in the function member invocation.

For areference or output parameter, the variable reference is evaluated and the resulting storage location
becomes the storage location represented by the parameter in the function member invocation. If the
variable reference given as areference or output parameter is an array element of areference-type, a

90 Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

run-time check is performed to ensure that element type of the array isidentical to the type of the
parameter. If this check fails, an ArrayTypeMismatchException is thrown.

The expressions of an argument list are always evauated in the order they are written. Thus, the example

class Test

{
static void F(int x, int y, int z) {
Console.WriteLine("x = {0}, v = {1}, z = {2}, X, Y, 2);
}

static void Main(Q) {

int i = 0;
F(i++, 1++, 1++);
}
}

produces the output

X=0,y=1, z=2

The array co-variancerules(812.5) permit avalue of an array type A[] to be areference to an instance of
an array type B[], provided an implicit reference conversion exists from B to A. Because of these rules,
when an array element of areference-typeis passed as a reference or output parameter, a run-time check is

reguired to ensure that the actual element type of the array is identical to that of the parameter. In the
example

class Test

static void F(ref object x) {...}

static void Main(Q {
object[] a = new object[10];
object[] b = new string[10];
F(ref a[0]); // Ok
F(ref b[1]D); // ArrayTypeMismatchException
}

the second invocation of F causes an ArrayTypeMismatchException to be thrown because the actual
element type of b isstringand not object.

7.4.2 Overload resolution

Overload resolution is a mechanism for selecting the best function member to invoke given an argument list
and a set of candidate function members. Overload resolution selects the function member to invoke in the
following distinct contexts within C#:

Invocation of amethod named in an invocation-expression (§7.5.5).
Invocation of a constructor named in an object-creation-expression (§7.5.10.1).
Invocation of an indexer accessor through an element-access (87.5.6).

Invocation of a predefined or user-defined operator referenced in an expression (87.2.3and §7.2.4).

Each of these contexts defines the set of candidate function members and the list of argumentsin its own
unique way. However, once the candidate function members and the argument list have been identified, the
selection of the best function member isthe samein all cases.

Firgt, the set of candidate function membersis reduced to those function members that are applicable
with respect to the given argument list (87.4.2.1). If this reduced set is empty, an error occurs.

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 91

C# LANGUAGE REFERENCE

92

Then, given the set of applicable candidate function members, the best function member in that set is
located. If the set contains only one function member, then that function member is the best function
member. Otherwise, the best function member is the one function member that is better than all other

function members with respect to the given argument list, provided that each function member is
compared to al other function members using the rulesin 8§7.4.2.2. If there is not exactly one function

member that is better than all other function members, then the function member invocation is
ambiguous and an error occurs.

The following sections define the exact meanings of the terms applicable function member and better
function member.

7.4.2.1 Applicable function member

A function member is said to be an applicable function member with respect to an argument list A when all
of the following are true:

The number of argumentsin A isidentical to the number of parametersin the function member
declaration.

For each argument in A, the parameter passing mode of the argument is identical to the parameter
passing mode of the corresponding parameter, and

for an input parameter, an implicit conversion (86.1) exists from the type of the argument to the type of
the corresponding parameter, or

for aref or out parameter, the type of the argument is identical to the type of the corresponding
parameter.

7.4.2.2 Better function member

Given an argument list A with a set of argument types Ax, Az, ..., Av and two applicable function members Mp
and My with parameter types Py, P2, ..., Py and Q1, Q2, ..., Qn, M is defined to be abetter function member
than Mg if

for each argument, the implicit conversion from Ax to Px is not worse than the implicit conversion from
Axto Qx, and

for at least one argument, the conversion from Ax to Px is better than the conversion from Ax to Qx.

7.4.2.3 Better conversion

Given an implicit conversion C; that converts from atype S to atype T1, and an implicit conversion C; that
converts from atype Sto atype Tz, the better conversion of the two conversions is determined as follows:

If T: and T2 are the same type, neither conversion is better.
If S isT1, C1 isthe better conversion.
If S isT2, C2 isthe better conversion.

If an implicit conversion from T1 to T2 exists, and no implicit conversion from T2 to T1 exists, C1 isthe
better conversion.

If animplicit conversion from T2 to T1 exists, and no implicit conversion from T1 to T2 exists, Cz isthe
better conversion.

If T1 issbyte and T, isbyte, ushort,uint, or ulong, C; isthe better conversion.

If T2 issbyte and T1 iSbyte, ushort,uint, or ulong, Cz isthe better conversion.

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

If T1isshortand Tz isushort, uint, or ulong, C: is the better conversion.

If T2 isshortand T1 isushort, uint, or ulong, Cz is the better conversion.

If Trisintand Tzisuint, or ulong, C; isthe better conversion.

If T2isintand Trisuint, or ulong, C; isthe better conversion.

If T1is long and T2 isullong, C1 is the better conversion.

If T2 is long and T1 isullong, C2 is the better conversion.

Otherwise, neither conversion is better.
If animplicit conversion C; is defined by these rulesto be a better conversion than an implicit conversion
Co, then it is dso the case that C2 is aworseconversion than Cs.

7.4.3 Function member invocation

This section describes the process that takes place at run-time to invoke a particular function member. It is
assumed that a compile-time process has aready determined the particular member to invoke, possibly by
applying overload resolution to a set of candidate function members.

For purposes of describing the invocation process, function members are divided into two categories:

Static function members. These are static methods, constructors, static property accessors and user-
defined operators. Static function members are always non-virtual.

Instance function members. These are instance methods, instance property accessors, and indexer
accessors. |nstance function members are either non-virtua or virtual, and are aways invoked on a
particular instance. The instance is computed by an instance expression, and it becomes accessible
within the function member as this (87.5.7).

The run-time processing of afunction member invocation consists of the following steps, where M isthe
function member and, if M is an instance member, E is the instance expression:

If M is a static function member:

The argument list is evaluated as described in §7.4.1.

M isinvoked.

If M is an instance function member declared in a val ue-type:

E isevaluated. If this evaluation causes an exception, then no further steps are executed.

If E isnot classified as avariable, then atemporary local variable of E’stypeis created and the vaue of
E isassigned to that variable. E isthen reclassified as a reference to that temporary loca variable. The

temporary variable is accessible as this within M, but not in any other way. Thus, only when E isatrue
variable isit possible for the caller to observe the changes that M makesto this.

The argument list is evaluated as described in §7.4.1.

M isinvoked. The variable referenced by E becomes the variable referenced by this.

If M is an instance function member declared in a reference-type:

E isevauated. If this evaluation causes an exception, then no further steps are executed.
The argument list is evaluated as described in §7.4.1.

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 93

C# LANGUAGE REFERENCE

94

If the type of E isa value-type, a boxing conversion (84.3.1) is performed to convert E to type object,
and E is considered to be of type object in the following steps.

The value of E is checked to be valid. If thevalue of E isnul I, aNul IReferenceException is
thrown and no further steps are executed.

The function member implementation to invoke is determined: If M isanon-virtual function member,
then M is the function member implementation to invoke. Otherwise, M isavirtua function member and

the function member implementation to invoke is determined through virtual function member lookup
(87.4.4) or interface function member lookup (§7.4.5).

The function member implementation determined in the step above isinvoked. The object referenced by
E becomes the object referenced by this.

7.4.3.1 Invocations on boxed instances

A function member implemented in a value-type can be invoked through a boxed instance of that value-
type in the following situations:

When the function member is an override of a method inherited from type object and isinvoked
through an instance expression of type object.

When the function member is an implementation of an interface function member and is invoked
through an instance expression of an interface-type

When the function member isinvoked through a delegate.

In these situations, the boxed instance is considered to contain a variable of the value-type, and this variable
becomes the variable referenced by this within the function member invocation. This in particular means
that when afunction member isinvoked on a boxed instance, it is possible for the function member to
modify the value contained in the boxed instance.

7.4.4 Virtual function member lookup
7.4.5 Interface function member lookup

7.5 Primary expressions
primary-expression:;

literal

simple-name

par enthesi zed-expression
member -access

invocation-expression
element-access
this-access

base-access
post-increment-expression
post-decrement-expression
new-expression
typeof-expression

sizeof -expression
checked-expression
unchecked-expression

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

7.5.1 Literals

A primary-expression that consists of a literal (82.5.3) is classified as avaue. The type of the value
depends on the literal asfollows:

A booleanliteral is of type bool. There are two possible boolean-literak, true and false.

Aninteger-literal is of type int, uint, long, or ulong, as determined by the value of the literal and
by the presence or absence of atype suffix (§2.5.3.2).

A real-literalis of typefloat, double, or decimal, as determined by the presence or absence of a
type suffix (82.5.3.3).

A characteriteral is of typechar.
A stringliteral is of type string.
The null-literal is of the null type.

7.5.2 Simple names

An simplename consists of asingle identifier.

simple-name:;
identifier

A simple-name is evaluated and classified as follows:
If the smple-name appears within a block and if the block contains alocal variable or parameter with
the given name, then the simple-name refers to that local variable or parameter and is classified asa
variable.

Otherwise, for each type T, starting with the immediately enclosing class, struct, or enumeration
declaration and continuing with each enclosing outer class or struct declaration (if any), if a member

lookup of the simple-name in T produces a match:

If T isthe immediately enclosing class or struct type and the lookup identifies one or more methods, the
result is a method group with an associated instance expression of this.

If T isthe immediately enclosing class or struct type, if the lookup identifies an instance member, and if
the reference occurs within the block of a congtructor, an instance method, or an instance accessor, the
result is exactly the same as a member access (§7.5.4) of the form this.E, whereE is the smple-name.

Otherwise, the result is exactly the same as a member access (87.5.4) of theform T.E, where E isthe
simple-name. In this case, it is an error for the smple-name to refer to an instance member.

Otherwise, starting with the namespace declaration in which the simple-name occurs (if any), continuing
with each enclosing namespace declaration (if any), and ending with the global namespace, the
following steps are evauated until an entity is located:

If the namespace contains a namespace member with the given name, then the simple-name refersto
that member and, depending on the member, is classified as a namespace or atype.

Otherwise, if the namespace declaration contains ausing-aliasdirective that associates the given name
with an imported namespace or type, then the simple-name refers to that namespace or type.

Otherwisg, if the namespaces imported by the using-namespace-directives of the namespace declaration
contain exactly one type with the given name, then the simple-name refers to that type.

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 95

C# LANGUAGE REFERENCE

96

Otherwiseg, if the namespaces imported by the using-namespace-directives of the namespace declaration
contain more than one type with the given name, then the simple-name is ambiguous and an error
OCCuUrs.

Otherwise, the name given by the simple-name is undefined and an error occurs.

7.5.2.1 Invariant meaning in blocks

For each occurrence of a given identifier as asimple-name in an expression, every other occurrence of the
same identifier as a simple-name in an expression within the immediately enclosing block (88.2) or switch-
block (88.7.2) must refer to the same entity. This rule ensures that the meaning of an name in the context of
an expression is aways the same within a block.

The example
class Test

double x;

void F(bool b) {
X = 1.0;
it (b) {
int x = 1;
b

}
}

isin error because x refers to different entities within the outer block (the extent of which includes the
nested block in the i £ statement). In contrast, the example

class Test

double x;
void F(bool b) {
if (b) {
X =1.0;
H
else {
int x = 1;
3
3

}
is permitted because the name x is never used in the outer block.

Note that the rule of invariant meaning applies only to smple names. It is perfectly valid for the same
identifier to have one meaning as a smple name and another meaning as right operand of a member access
(87.5.4). For exampl e:

struct Point

int x, y;
public Point(int x, int y) {
this.x = X;
this.y = y;
}
}
The example above illustrates a common pattern of using the names of fields as parameter namesin a
congtructor. In the example, the simple names x and y refer to the parameters, but that does not prevent the
member access expressionsthis.x and this.y from accessing the fields.

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

7.5.3 Parenthesized expressions
A parenthesized-expression consists of an expression enclosed in parentheses.
par enthesi zed-expression:

(expression)

A parenthesized-expression is evaluated by evaluating the expression within the parentheses. If the
expression within the parentheses denotes a namespace, type, or method group, an error occurs. Otherwise,
the result of the parenthesized-expression is the result of the evaluation of the contained expression

7.5.4 Member access

A member-access consists of aprimary-expression or a predefined-type, followed by a“.” token, followed
by anidentifier.

member-access:
primary-expression . identifier
predefined-type . identifier

predefined-type: one of
bool byte char decimal double float int long

object sbyte short string uint ulong ushort

A member-access of theform E. 1, where E isa primary-expression or apredefined-type and 1 isan
identifier, is evaluated and classified as follows:

If E isanamespace and 1 isthe name of an accessible member of that namespace, then the result is that
member and, depending on the member, is classified as a namespace or atype.

If E isapredefined-type or a primary-expression classified as a type, and a member lookup (87.3) of 1
iNnE produces a match, then E. I is evaluated and classified as follows:

If 1 identifies atype, then the result is that type.

If 1 identifies one or more methods, then the result is a method group with no associated instance
expression.

If 1 identifies a static property, then the result is a property access with no associated instance
expression.

If 1 identifiesastaticfield:

If the fidd is readonly and the reference occurs outside the static constructor of the class or struct
in which the field is declared, then the result is a value, namely the value of the static field I in E.

Otherwise, the result is a variable, namely the static field 1in E.
If 1 identifiesa staticevent:

If the reference occurs within the class or struct in which the event is declared, then E. 1 is
processed exactly asif I was a static field or property.

Otherwise, the result is an event access with no associated instance expresson.
If 1 identifies a constant, then the result is a value, namely the vaue of that constant.

If 1 identifies an enumeration member, then the result is a vaue, namely the value of that enumeration
member.

Otherwise, E. I isan invalid member reference, and an error occurs.

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 97

C# LANGUAGE REFERENCE

If E is aproperty access, indexer access, variable, or value, the type of which is T, and a member lookup
(87.3) of 1in T producesamatch, thenE. I isevauated and classified as follows:

Firg, if E is aproperty or indexer access, then the value of the property or indexer accessis obtained
(87.1.1) and E isreclassified asavalue.

If 1 identifies one or more methods, then the result is a method group with an associated instance
expresson of E.

If 1 identifies an instance property, then the result is a property access with an associated instance
expression of E.

If T isaclasstype and I identifies an ingtance field of that class-type:
If the value of E isnul I, then aNullReferenceException isthrown.

Otherwisg, if the field is readonly and the reference occurs outside an instance constructor of the
classin which the field is declared, then the result is a value, namely the value of the field 1 in the
object referenced by E.

Otherwise, the result is a variable, namely thefield 1 in the object referenced by E.
If T isastruct-typeand I identifies an instance field of that struct-type:

If Eisavalug, or if the fidld isreadonly and the reference occurs outside an instance constructor
of the struct in which the field is declared, then the result is a value, namely the vaue of the fidd 1 in
the struct instance given by E.

Otherwise, the result is a variable, namely the field 1 in the struct instance given by E.
If 1 idertifies an instance event:

If the reference occurs within the class or struct in which the event isdeclared, then E. 1 is
processed exactly asif 1 was an instance field or property.

Otherwise, the result is an event access with an associated instance expression of E.

Otherwise, E. I isan invalid member reference, and an error occurs.

7.5.4.1 Identical simple names and type names

In amember access of theform E. 1, if E isasingle identifier, and if the meaning of E as a snple-name
(87.5.2) isacongtant, field, property, local variable, or parameter with the same type as the meaning of E as
atype-name (83.6), then both possible meanings of E are permitted. The two possible meaningsof E. 1 are
never ambiguous, since I must necessarily be a member of the type E in both cases. In other words, the rule
simply permits access to the static members of E where an error would have otherwise occurred. For
example:

struct Color

public static readonly Color White
public static readonly Color Black

public Color Complement() {.-.}
}

class A

new Color(...);
new Color(...);

public Color Color; // Field Color of type Color

98 Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

void FQ {
Color = Color.Black; // References Color.Black static member

Color = Color.Complement(); // Invokes Complement() on Color field

static void GO {
Color c = Color.White; // References Color.White static member
b

3
Within the A class, those occurrences of the Color identifier that reference the Color type are underlined,
and those that reference the Color field are not underlined.

7.5.5 Invocation expressions
An invocation-expression is used to invoke a method.

invocation-expression:

primary-expression (argumentlisty:)
The primary-expression of an invocation-expression must be a method group or avalue of adelegate-type.
If theprimary-expression is a method group, the invacation-expressionis a method invocation (87.5.5.1). If
the primary-expression is a value of a delegate-type, the invocation-expression is a delegate invocation
(87.5.5.2). If the primary-expression is neither a method group nor a value of adelegate-type, an error
occurs.

The optiona argument-list (§7.4.1) provides values or variable references for the parameters of the method.

The result of evaluating an invocation-expressionis classified as follows:

If the invocation-expression invokes a method or delegate that returns void, the result is nothing. An
expression that is classified as nothing cannot be an operand of any operator, and is permitted only in
the context of astatement-expression (88.6).

Otherwise, the result is a value of the type returned by the method or delegate.

7.5.5.1 Method invocations
For a method invocation, the primary-expression of the invocation-expresson must be a method group. The

method group identifies the one method to invoke or the set of overloaded methods from which to choose a
specific method to invoke. In the latter case, determination of the specific method to invoke is based on the

context provided by the types of the arguments in the argument-list.

The compile-time processing of a method invocation of the form M(A), where M isamethod group and A is
anoptional argument-list, consists of the following steps:

The set of candidate methods for the method invocation is constructed. Starting with the set of methods
associated with M, which were found by a previous member lookup (87.3), the set is reduced to those
methods that are applicable with respect to the argument list A. The set reduction consists of applying
the following rules to each method T.N in the set, where T isthe type in which the method N is declared:

If N isnot applicable with respect to A (87.4.2.1), then N is removed from the set.

If N is applicable with respect to A (87.4.2.1), then al methods declared in a base type of T are removed
from the set.

If the resulting set of candidate methods is empty, then no applicable methods exist, and an error occurs.
If the candidate methods are not dl declared in the same type, the method invocation is ambiguous, and
an error occurs (this latter situation can only occur for an invocation of a method in an interface that has
multiple direct base interfaces, as described in 813.2.5).

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 99

C# LANGUAGE REFERENCE

100

The best method of the set of candidate methods is identified using the overload resolution rules of
§7.4.2. If asingle best method cannot be identified, the method invocation is ambiguous, and an error
OCCuUrs.

Given a best method, the invocation of the method is validated in the context of the method group: If the
best method is a static method, the method group must have resulted from a smple-name or amember-
access through atype. If the best method is an instance method, the method group must have resulted
from asimple-name, a member-access through a variable or value, or a base-access If neither of these
requirements are true, a compile-time error occurs.

Once amethod has been sdlected and validated at compile-time by the above steps, the actual run-time
invocation is processed according to the rules of function member invocation described in §7.4.3.

The intuitive effect of the resolution rules described aboveis as follows: To locate the particular method
invoked by a method invocation, start with the type indicated by the method invocation and proceed up the
inheritance chain until at least one applicable, accessible, non-override method declaration is found. Then
perform overload resolution on the set of applicable, accessible, non-override methods declared in that type
and invoke the method thus selected.

7.5.5.2 Delegate invocations

For a delegate invocation, the primary-expression of the invocation-expression must be avaue of a

delegate-type. Furthermore, considering the del egate-type to be a function member with the same
parameter list as the delegate-type, the delegate-type must be applicable (§7.4.2.1) with respect to the

argument-list of the invocation-expression.

The run-time processing of a delegate invocation of the form D(A), where D isa primary-expression of a
delegate-typeand A isan optiona argument-list, consists of the following steps:

D is evauated. If this evaluation causes an exception, no further steps are executed.

The value of D is checked to be valid. If the value of D isnul I, aNul IReferenceException is
thrown and no further steps are executed.

Otherwise, D isreference to a delegate instance. A function member invocation (87.4.3) is performed on
the method referenced by the delegate. If the method is an instance method, the instance of the

invocation becomes the instance referenced by the delegate.

7.5.6 Element access

An elementaccess consists of a primary-expression, followed by a“[“ token, followed by an expression-
ligt, followed by a“]” token. The expression-list consists of one or more expressions, separated by commeas.

element-access:
primary-expression [expression-list]

expression-ist:

expression

expression-li , expression
If theprimary-expression of an element-accessisavaue of an array-type, the element-accessis an array
access (87.5.6.1). Otherwise, the primary-expression must be avariable or vaue of aclass, struct, or
interface type that has one or more indexer members, and the element-access is then an indexer access
(87.5.6.2).

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

7.5.6.1 Array access

For an array access, the primary-expressionof the element-accessmust be avalue of an array-type. The
number of expressions in the expression-listmust be the same as the rank of the array-type, and each
expression must be of type int or of atype that can be implicitly converted to int.

The result of evaluating an array accessis a variable of the element type of the array, namely the array
element selected by the value(s) of the expression(s) in the expression-list.

The run-time processing of an array access of the form P[A], where P isaprimary-expression of an array-
type and A isan expression-list, consists of the following steps:

P is evauated. If this evaluation causes an exception, no further steps are executed.

The index expressions of the expression-list are evaluated in order, from left to right. Following
evaluation of each index expression, an implicit conversion (86.1) to type intis performed. If
evaluation of an index expression or the subsequent implicit conversion causes an exception, then no
further index expressions are evaluated and no further steps are executed.

The value of P is checked to be vdid. If the value of P isnul I, aNul IReferenceException is
thrown and no further steps are executed.

The vdue of each expression in the expression-list is checked against the actual bounds of each
dimension of the array instance referenced by P. If one or more values are out of range, an
IndexOutOfRangeException isthrown and no further steps are executed.

The location of the array element given by the index expression(s) is computed, and this location
becomes the result of the array access.

7.5.6.2 Indexer access
For an indexer access, the primary-expression of the element-access must be a variable or value of aclass,

struct, or interface type, and this type must implement one or more indexers that are applicable with respect
to the expression-list of the element-access.

The compile-time processing of an indexer access of theform P[A], where Pis aprimary-expression of a
class, struct, or interface type T, and A is an expression-list, consists of the following steps:

The set of indexers provided by T is constructed. The set consists of al indexers declared in T or abase
type of T that are not override declarations and are accessible in the current context (83.3).

The set is reduced to those indexers that are applicable and not hidden by other indexers. The following
rules are gpplied to each indexer S. 1 in the set, where Sis the type in which the indexer 1 is declared:

If 1 isnot applicable with respect to A (87.4.2.1), then 1 isremoved from the set.

If 1 isapplicable with respect to A (§7.4.2.1), then al indexers declared in a base type of S areremoved
from the set.

If the resulting set of candidate indexers is empty, then no applicable indexers exist, and an error occurs.
If the candidate indexers are not al declared in the same type, the indexer access is ambiguous, and an
error occurs (this latter situation can only occur for an indexer access on an instance of an interface that
has multiple direct base interfaces).

The best indexer of the set of candidate indexersis identified using the overload resolution rules of

87.4.2. If asingle best indexer cannot be identified, the indexer access is ambiguous, and an error
occurs.

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 101

C# LANGUAGE REFERENCE

102

The result of processing the indexer access is an expression classified as an indexer access. The indexer
access expression references the indexer determined in the step above, and has an associated instance
expression of P and an associated argument list of A.

Depending on the context in which it is used, an indexer access causes invocation of either the get-accessor
or the set-accessor of the indexer. If the indexer accessis the target of an assignment, the set-accessor is
invoked to assign anew value (87.13.1). In all other cases, the get-accessor is invoked to obtain the current
value (87.1.).

7.5.6.3 String indexing

The string classimplements an indexer that allows the individua characters of a string to be accessed.
The indexer of the string classhasthefollowing declaration:

public char this[int index] { get; }

In other words, a read-only indexer that takes a single argument of type int and returns an element of type
char. Values passed for the index argument must be greater than or equal to zero and less than the length
of the gtring.

7.5.7 This access
A this-access consists of the reserved word this.

this-access:

this
A this-accessis permitted only in the block of a constructor, an instance method, or an instance accessor. It
has one of the following meanings.

When this isused in aprimary-expression within a constructor of aclass, itis classfied asavalue.
The type of the value is the class within which the reference occurs, and the value is a reference to the
object being constructed.

When this is used in aprimary-expression within an instance method or instance accessor of aclass, it
is classified as avaue. The type of the value is the class within which the reference occurs, and the
value is a reference to the object for which the method or accessor was invoked.

When this isused in aprimary-expression within a constructor of astruct, it is classified asavariable.
The type of the variable is the struct within which the reference occurs, and the variable represents the
struct being constructed. The this variable of a constructor of a struct behaves exactly the same asan
out parameter of the struct type—thisin particular means that the variable must be definitely assigned
in every execution path of the constructor.

When this isused in aprimary-expresd on within an instance method or instance accessor of a struct,
it is classified as a variable. The type of the variable is the struct within which the reference occurs, and
the variable represents the struct for which the method or accessor was invoked. The this variable of
an instance method of a struct behaves exactly the same as a ref parameter of the struct type.

Use of this inaprimary-expression in acontext other than the ones listed aboveis an error. In particular,
it is not possible to refer to this in a static method, a static property accessor, or in a variable-initializer of
afield declaration.

7.5.8 Base access

A base-access consists of the reserved word base followed by either a“.” token and an identifier or an
expression-list enclosed in square brackets:

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

base-access:

base . identifier

base [expresson-lig 1]
A base-access is used to access base class members that are hidden by similarly named membersin the
current class or struct. A base-accessis permitted only in the block of a constructor, an instance method, or
an instance accessor. When base. | occursin aclass or struct, 1 must denote a member of the base class of
that class or struct. Likewise, when base[E] occursin aclass, an applicable indexer must exist in the base
class.

At compile-time, base-access expressions of the form base. 1 and base[E] are evauated exactly asif
they werewritten ((B)this). 1 and ((B)this)[E], whereB isthe base class of the class or struct in
which the congtruct occurs. Thus, base . 1 and base[E] correspondto this. 1 and this[E], except
this isviewed as an instance of the base class.

When abase-access references a function member (a method, property, or indexer), the function member is
considered non-virtual for purposes of function member invocation (87.4.3). Thus, within an override of
avirtual function member, a base-access can be used to invoke the inherited implementation of the
function member. If the function member referenced by a base-accessis abstract, an error occurs.

7.5.9 Postfix increment and decrement operators

post-increment-expression:
primary-expression ++

post-decrement-expression:
primary-expression --

The operand of a postfix increment or decrement operation must be an expression classified asavariable, a
property access, or an indexer access. The result of the operation is a value of the same type as the operand.

If the operand of a postfix increment or decrement operation is a property or indexer access, the property or
indexer must have both aget and aset accessor. If thisis not the case, a compile-time error occurs.

Unary operator overload resolution (87.2.3) is applied to select a specific operator implementation.
Predefined ++ and -- operators exist for the following types: sbyte, byte, short, ushort, int, uint,
long,ulong, char, float, double,decimal, and any enum type. The predefined ++ operators return
the vaue produced by adding 1 to the argument, and the predefined -- operators return the value produced
by subtracting 1 from the argument.

The run-time processing of a postfix increment or decrement operation of the form x++ or x-- consists of
the following steps:

If x isclassified as avariable:

x is evauated to produce the variable.

The value of x is saved.

The selected operator is invoked with the saved value of x asits argument.

The value returned by the operator is stored in the location given by the evaluation of x.
The saved vaue of x becomes the result of the operation.

If x is classified as a property or indexer access.

Theinstance expression (if x isnot static) and the argument list (if x is an indexer access) associated
with x are evaluated, and the results are used in the subsequent get and set accessor invocations.

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 103

C# LANGUAGE REFERENCE

The get accessor of x isinvdked and the returned value is saved.

The selected operator is invoked with the saved value of x asits argument.

The set accessor of x isinvoked with the value returned by the operator asitsvalue argument.
The saved vaue of x becomes the result of the operation.

The ++ and -- operators also support prefix notation, as described in 87.6.7. The result of x++ or x-- is
the vaue of x before the operation, whereas the result of ++x or --x isthe value of x after the operation. In
either case, x itsalf hasthe same value after the operation.

An operator ++ Or operator -- implementation can be invoked using either postfix and prefix notation.
It is not possible to have separate operator implementations for the two notations.

7.5.10 new operator
The new operator is used to create new instances of types.

new-expression:
obj ect-creation-expression
array-creation-expression
delegate-creatiornexpression
There are three forms of new expressions:
Object creation expressions are used to create a new instances of class types and value types.
Array creation expressions are used to create new instances of array types.
Delegate creation expressions are used to create new instances of delegate types.

The new operator implies creation of an instance of a type, but does not necessarily imply dynamic
alocation of memory. In particular, instances of value types require no additional memory beyond the
variablesin which they reside, and no dynamic allocations occur when new is used to create instances of
valuetypes.

7.5.10.1 Object creation expressions
An object-creation-expression is used to create a new instance of a class-type or avalue-type.

obj ect-creation-expression:

new type (argument-lishy)
The type of an object-creation-expression must be aclass-typeor a value-type. The typecannot be an
abstract class-type

The optiona argument-list (87.4.1) is permitted only if the type isa classtype or astruct-type.

The compile-time processing of an object-creation-expression of the form new T(A), whereT isa class-
type or a value-type and A isan optiona argument-list, consists of the following steps:

If T isavaluetypeand A is not present:

The object-creation-expression is a default constructor invocation. The result of the object-creation-
expression is avalue of type T, namely the default value for T as defined in 84.1.1

Otherwise, if T isa classtype or astructtype:

If T isan abstract class-type, an error occurs.

104 Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

The congtructor to invoke is determined using the overload resolution rules of §7.4.2 The set of
candidate congtructors consists of al accessible constructors declared in T. If the set of candidate
constructors is empty, or if asingle best constructor cannot be identified, an error occurs.

The result of the object-creation-expressionis avaue of typeT, namely the value produced by invoking
the constructor determined in the step above.

Otherwise, the object-creation-expression isinvalid, and an error occurs.

The run-time processing of an object-creation-expression of the form new T(A), where T is classtype or a
structtypeand A is an optional argument-list, consists of the following steps:

If T isaclasstype:

A new instance of class T is dlocated. If there is not enough memory available to alocate the new
instance, an outOfMemoryException isthrown and no further steps are executed.

All fields of the new instance are initialized to their default values (85.2).

The constructor is invoked according to the rules of function member invocation (§7.4.3). A referenceto
the newly allocated instance is automatically passed to the constructor and the instance can be accessed
from within the constructor as this.

If T isastruct-type

Aninstance of type T is created by alocating atemporary local variable. Since a constructor of a struct-
type is required to definitely assign a value to each field of the instance being created, no initialization
of the temporary variable is necessary.

The constructor is invoked according to the rules of function member invocation (87.4.3). A reference to
the newly allocated instance is automatically passed to the constructor and the instance can be accessed
from within the constructor as this.

7.5.10.2 Array creation expressions
An array-creation-expression is used to create a new instance of an array-type

array-creation-expression:

new non-array-type [expresson-lis] rank-specifiers,, array-initializerqy

new array-type array-initializer
An array creation expression of first form alocates an array instance of the type that results from deleting
each of theindividual expressions from the expression list. For example, the array creation expression new
int[10, 20] produces an array instance of type int[,], and the array creation expression new

int[10][,] producesan array of type int[][,]. Each expression in the expression list must be of type
int or of atypethat can be implicitly converted to int. The vaue of each expression determines the

length of the corresponding dimension in the newly allocated array instance.

If an array creation expression of the first form includes an array initializer, each expression in the
expression list must be a constant and the rank and dimension lengths specified by the expression list must

match those of the array initializer.

In an array creation expression of the second form, the rank of the specified array type must match that of
the array initializer. The individual dimension lengths are inferred from the number of elements in each of
the corresponding nesting levels of the array initializer. Thus, the expression

new int[,] {{0, 1}, {2, 3}, {4, 5}};
exactly correspondsto

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 105

C# LANGUAGE REFERENCE

106

new int[3, 2] {{0, 1}, {2, 3}, {4, 5}};
Array initializers are further described in 812.6.
The result of evauating an array creation expression is classified as a value, namely a reference to the

newly allocated array instance. The run-time processing of an array creation expression consists of the
following steps:

The dimension length expressions of the expression-list are evauated in order, from left to right.
Following evauation of each expression, an implicit conversion (86.1) to type int is performed. If
evaluation of an expression or the subsequent implicit conversion causes an exception, then no further
expressions are evauated and no further steps are executed.

The computed values for the dimension lengths are validated. If one or more of the values are less than
zero, an IndexOutOfRangeException isthrown and no further steps are executed.

An array instance with the given dimension lengths is allocated. If there is not enough memory available
to alocate the new instance, an outOfMemoryException isthrown and no further steps are executed.

All elements of the new array instance are initialized to their default values (85.2).

If the array creation expression contains an array initializer, then each expression in the array initiaizer
is evaluated and assigned to its corresponding array €l ement. The evaluations and assignments are
performed in the order the expressions are written in the array initiaize—in other words, elements are
initialized in increasing index order, with the rightmost dimension increasing first. If evaluation of a
given expression or the subsequent assignment to the corresponding array element causes an exception,
then no further elements are initialized (and the remaining elements will thus have their default values).

An array creation expression permits instantiation of an array with eements of an array type, but the
elements of such an array must be manualy initialized. For example, the statement

int[][] a = new int[100][];

creates asingle-dimensional array with 100 elements of type int[]. Theinitia value of each element is
null. It isnot possible for the same array creation expression to aso instantiate the sub-arrays, and the
Statement

int[J[] a = new int[100][5]; // Error
isan error. Instantiation of the sub-arrays must instead be performed manually, asin

int[1[1 a = new Iint[100][]1;
for (ant i = 0; i1 < 100; 1++) a[i] = new int[5];

When an array of arrays has a“rectangular” shape, that is when the sub-arrays are al of the same length, it
is more efficient to use a multi-dimensiona array. In the example above, instantiation of the array of arrays
creates 101 objects—one outer array and 100 sub-arrays. In contrast,

int[,] = new Int[100, 5];
creates only a single object, atwo-dimensional array, and accomplishes the alocation in a single statement.

7.5.10.3 Delegate creation expressions
A delegate-creation-expression is used to create a new instance of adel egate-type.

del egate-creation-expression:
new delegate-type (expression)

The argument of a delegate creation expression must be a method group or a value of adelegate-type If the
argument is a method group, it identifies the method and, for an instance method, the object for which to

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

create adelegate. If the argument is avalue of a delegate-type, it identifies a delegate instance of which to
Create acopy.

The compile-time processing of a delegate-creation-expression of the form new D(E),where D isa
delegate-type and E isan expression, consists of the following steps:

If E is amethod group:
If the method group resulted from a base-access, an error occurs.

The set of methods identified by E must include exactly one method with precisely the same signature
and return type as those of D, and this becomes the method to which the newly created delegate refers.
If no matching method exists, or if more than one matching methods exists, an error occurs. If the
selected method is an instance method, the instance expression associated with E determines the target
object of the delegate.

Asin amethod invocation, the selected method must be compatible with the context of the method
group: If the method is a static method, the method group must have resulted from a simple-name or a
member -access through a type. If the method is an instance method, the method group must have
resulted from a simple-name or a marber -accessthrough a variable or value. If the selected method
does not match the context of the method group, an error occurs.

The result is avaue of type D, namely a newly created delegate that refers to the selected method and
target object.

Otherwise, if E isavaue of a delegate-type:

The delegate-type of E must have the exact same signature and return type as D, or otherwise an error
occurs.

The result is avaue of type D, namely a newly created delegate that refers to the same method and
target object asE.

Otherwise, the delegate creation expression isinvalid, and an error occurs.

The run-time processing of a delegate-creation-expresson of the form new D(E), where D is adelegate-
type and E isan expression, consists of the following steps.

If E is amethod group:

If the method selected at compile-time is a tatic method, the target object of the delegateisnul I.
Otherwise, the sdlected method is an instance method, and the target object of the delegate is

determined from the instance expression associated with E:

The ingtance expression is evaluated. If this evaluation causes an exception, no further steps are
executed.

If the instance expression is of areference-type, the value computed by the instance expression
becomes the target object. If the target object isnull I, aNul IReferenceException isthrown and
no further steps are executed.

If the instance expression is of avalue-type, aboxing operation (84.3.1) is performed to convert the
value to an object, and this object becomes the target object.

A new instance of the delegate type D is allocated. If there is not enough memory available to allocate
the new instance, an OutOfMemoryException isthrown and no further steps are executed.

The new delegate instance is initialized with a reference to the method that was determined at compile-
time and areference to the target object computed above.

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 107

C# LANGUAGE REFERENCE

108

If E isa value of addegate-type:
E isevaluated. If this evaluation causes an exception, no further steps are executed.
If thevalue of E isnul I, aNul IReferenceException isthrown and no further steps are executed.

A new instance of the delegate type D isallocated. If there is not enough memory available to allocate
the new instance, an OutOofMemoryException isthrown and no further steps are executed.

The new delegate instance is initialized with references to the same method and object as the delegate
instancegiven by E.

The method and object to which a del egate refers are determined when the delegate is instantiated and then
remain congtant for the entire lifetime of the delegate. In other words, it is not possible to change the target
method or object of a delegate once it has been created.

It is not possible to create a delegate that refers to a constructor, property, indexer, or user-defined operator.
As described above, when a delegate is created from a method group, the signature and return type of the
delegate determine which of the overloaded methods to select. In the example

delegate double DoubleFunc(double x);

class A

DoubleFunc ¥ = new DoubleFunc(Square);

static float Square(float x) {
return x * X;

static double Square(double x) {
return x * Xx;
b

}

the A_f field isinitialized with a delegate that refers to the second Square method because that method
exactly matches the signature and return type of DoubleFunc. Had the second Square method not been
present, a compile-time error would have occurred.

7.5.11 typeof operator
The typeof operator is used to obtain the System. Type object for a type.

typeof-expression:;

typeof (type)
The result of atypeof-expression isthe System. Type object for the indicated type.
The example

class Test
{
static void Main(Q) {
Type[l t = {

typeof(int),
typeof(System. Int32),
typeof(string),
typeof(double[])

}:

for (int 1 = 0; 1 < t.Length; i++) {
Console._WriteLine(t[i]-Name);

b

}
}

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

produces the following outpuit:

Int32
Int32

String
Double[]

Note that int and System. Int32 are the same type.

7.5.12 sizeof operator
sizeof-expression:
sizeof (type)
7.5.13 checked and unchecked operators

The checked and unchecked operators are used to control the overflow checking context for integral-type
arithmetic qperations and conversions.

checked-expression:
checked (expresson)

unchecked-expression:
unchecked (expression)

The checked operator evaluates the contained expression in a checked context, and the unchecked
operator evaluates the contained expression in an unchecked context. A checked-expression or unchecked-
expression corresponds exactly to a parenthesized-expression (87.5.3), except that the contained expression
is evaluated in the given overflow checking context.

The overflow checking context can also be controlled through the checked and unchecked statements
(88.11).

The following operations are affected by the overflow checking context established by the checked and
unchecked operators and statements:

The predefined ++ and -- unary operators (87.5.9 and §7.6.7), when the operand is of an integral type.
The predefined - unary operator (87.6.2), when the operand is of an integral type.

The predefined +, -, *, and 7/ binary operators (87.7), when both operands are of integral types.
Explicit numeric conversions (86.2.1) from one integral type to another integral type.

When one of the above operations produce a result that is too large to represent in the destination type, the
context in which the operation is performed controls the resulting behavior:

In achecked context, if the operation is a constant expression (§7.15), acompile-time error occurs.
Otherwise, when the operation is performed at run-time, an OverflowException isthrown.

Inan unchecked context, the result is truncated by discarding any high-order bits that do not fit in the
destination type.

When a nortconstant expression (an expression that is evaluated at run-time) is not enclosed by any
checked or unchecked operators or statements, the effect of an overflow during the run-time evaluation
of the expression depends on external factors (such as compiler switches and execution environment
configuration). The effect is however guaranteed to be either that of a checked evaluation or that of an
unchecked evauation.

For constant expressions (expressionsthat can be fully evaluated a compile-time), the default overflow
checking context is always checked. Unless a constant expression is explicitly placed in an unchecked

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 109

C# LANGUAGE REFERENCE

context, overflows that occur during the compile-time evaluation of the expression aways cause compile-
time errors.

In the example

class Test

{
static iInt x 1000000;

static int y 1000000;

static int FQ {
return checked(x * y); // Throws OverflowException
}

static int GO {
return unchecked(x * y); // Returns -727379968
}

static int HO {
return x * y; // Depends on default
b

}

no compile-time errors are reported since neither of the expressions can be evaluated at compile-time. At
run-time, the F() method throws an OverflowException, and the G() method returns —727379968 (the
lower 32 hits of the out-of-range result). The behavior of the H() method depends on the default overflow
checking context for the compilation, but it is either the same as F() or the sameas G().

In the example
class Test

{
const int x 1000000;
const int y 1000000;

static int FQO {
return checked(x * y); // Compile error, overflow
b

static int GO {
return unchecked(x * y); // Returns -727379968

static int HQO {
return x * vy; // Compile error, overflow
}

}

the overflows that occur when evaluating the constant expressionsin FQ) and H() cause compile-time
errors to be reported because the expressions are evaluated in achecked context. An overflow also occurs
when evaluating the constant expression in G(), but since the evaluation takes place in an unchecked
context, the overflow is not reported.

The checked and unchecked operators only affect the overflow checking context for those operations
that are textually contained withinthe“ (" and“)” tokens. The operators have no fect on function
members that are invoked as a result of evaluating the contained expression. In the example

class Test

static int Multiply(int x, int y) {
return x * y;
3

110 Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

static int FQ {
return checked(Multiply (1000000, 1000000));
¥

}

the use of checked in F() does not affect the evaluation of x * yin Multiply (), ad x * y is therefore
evaluated in the default overflow checking context.

The unchecked operator is convenient when writing constants of the signed integral types in hexadecimal
notation. For example:

class Test

public const int AllIBits unchecked ((int)OxFFFFFFFF) ;

unchecked ((int)0x80000000) ;

public const int HighBit

Both of the hexadecimal constants above are of type uint. Because the constants are outside the int range,
without the unchecked operator, the casts to int would produce compile-time errors.

7.6 Unary expressions

unary-expression:
primary-expression
+ unary-expression
- unary-expression
1 unary-expression
~ unary-expression
* unary-expression
& unary-expression
pre-increment-expresson
pre-decrement-expression
cast-expression

7.6.1 Unary plus operator

For an operation of the form +x, unary operator overload resolution (87.2.3) is applied to select a specific
operator implementation. The operand is converted to the parameter type of the selected operator, and the
type of the result is the return type of the operator. The predefined unary plus operators are;

int operator +(int x);
uint operator +(uint xg;
long operator +(long x);

ulong operator +(ulong x);
float operator +(float x);
double operator +(double x);
decimal operator +(decimal x);

For each of these operators, the result is smply the vaue of the operand.

7.6.2 Unary minus operator

For an operation of the form —x, unary operator overload resolution (87.2.3) is applied to select a specific
operator implementation. The operand is converted to the parameter type of the selected operator, and the
type of the result is the return type of the operator. The predefined negation operators are:

Integer negation:

int operator —(int X);
long operator —(long x);

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 111

C# LANGUAGE REFERENCE

The result is computed by subtracting x from zero. In a checked context, if the value of x isthe maximum
negative int or long, an OverflowException isthrown. Inan unchecked context, if the value of x is
the maximum negative int or long, the result is that same value and the overflow is not reported.

If the operand of the negation operator is of type uint, it is converted to type long, and the type of the
result is long. An exception is the rule that permits the int value -2147483648 (-2**) to bewritten asa
decimal integer litera (82.5.3.2).

If the operand of the negation operator is of type ulong, an error occurs. An exception is the rule that
permits the long value -9223372036854775808 (-2°) to be written as decimal integer literal (§2.5.3.2).

Floating-point negation:

float operator —(float x);
double operator —(double x);

The result isthe value of x with itssign inverted. If x isNaN, the result is also NaN.
Decimal negation:

decimal operator —(decimal x);
Theresult is computed by subtracting x from zero.

7.6.3 Logical negation operator

For an operation of theform 1x, unary operator overload resolution (87.2.3) is applied to select a specific
operator implementation. The operand is converted to the parameter type of the selected operator, and the
type of the result is the return type of the operator. Only one predefined logical negation operator exists:

bool operator !(bool Xx);

This operator computes the logical negation of the operand: If the operand istrue, theresult is false. If
the operand is false, theresult is true.

7.6.4 Bitwise complement operator

For an operation of the form ~x, unary operator overload resolution (87.2.3) is applied to select a specific
operator implementation. The operand is converted to the parameter type of the selected operator, and the
type of the result is the return type of the operator. The predefined bitwise complement operators are:

int operator ~(int x);

uint operator ~(uint x);

long operator ~(long Xx);

ulong operator ~(ulong x);

For each of these operators, the result of the operation is the bitwise complement of x.
Every enumeration type E implicitly provides the following bitwise complement operator:
E operator ~(E x);

The result of evaluating ~x, where x is an expression of an enumeration type E with an underlying typeu,
is exactly the same as evaluating (E) (- (U)x).

112 Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

7.6.5 Indirection operator
7.6.6 Address operator

7.6.7 Prefix increment and decrement operators

pre-increment-expression:
++ Unary-expression

pre-decrement-expression:
-- unary-expression

The operand of a prefix increment or decrement operation must be an expression classified as avariable, a
property access, or an indexer access. The result of the operation is avalue of the same type as the operand.

If the operand of a prefix increment or decrement operation is a property or indexer access, the property or
indexer must have both aget and aset accessor. If thisis not the case, a compile-time error occurs.

Unary operator overload resolution (87.2.3) is applied to select a specific operator implementation.
Predefined ++ and -- operators exist for the following types. sbyte, byte, short, ushort, int, uint,
long,ulong, char, float, double,decimal, and any enum type. The predefined ++ operators return

the vaue produced by adding 1 to the argument, and the predefined -- operators return the value produced
by subtracting 1 from the argument.

The run-time processing of a prefix increment or decrement operation of the form ++x or —-x consists of
the following steps:

If x isclassified as avariable:

x is evaluated to produce the variable.

The selected operator isinvoked with the value of x as its argument.

The value returned by the operator is stored in the location given by the evaluation of x.
The value returned by the operator becomes the result of the operation.

If x is classified as a property or indexer access.

Theinstance expression (if x isnotstatic) and the argument list (if x is an indexer access) associated
with x are evaluated, and the results are used in the subsequent get and set accessor invocations.

The get accessor of x isinvoked.

The selected operator is invoked with the value returned by the get accessor as its argument.
The set accessor of x isinvoked with the value returned by the operator asitsvalue argument.
The value returned by the operator becomes the result of the operation.

The ++ and -- operators also support postfix notation, as described in §7.5.9 The result of x++ or x-- is
the vadue of x before the operation, whereas the result of ++x or --x isthe value of x after the operation. In
either case, x itself has the same value after the operation.

An operator ++ Or operator -- implementation can be invoked using either postfix and prefix notation.
It is not possible to have separate operator implementations for the two notations.

7.6.8 Cast expressions
A cast-expression is used to explicitly convert an expression to a given type.

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 113

C# LANGUAGE REFERENCE

114

cast-expression:

(type) unary-expression
A cagt-expression of the form (T)E, whereT isa typeand E is aunary-expression, performs an explicit
conversion (86.2 of the value of E to type T. If no explicit conversion exists from thetype of Eto T, an
error occurs. Otherwise, the result is the value produced by the explicit conversion. The result is dways
classfied asavalue, evenif E denotes avariable.

The grammar for a cast-expression leads to certain syntactic ambiguities. For example, the expression
(x)-y could either be interpreted as acast-expression (acast of —y to type x) or as an additive-expresson
combined with a parenthesized-expression (which computes the vaue x — y).

To resolve cast-expression ambiguities, the following rule exists: A sequence of one or more tokens (§2.4.6)
enclosed in parentheses is considered the start of acast-expressiononly if at least one of the following are
true:

The sequence of tokens is correct grammar for a type, but not for an expression.

The sequence of tokens is correct grammar for a type, and the token immediately following the closing
parentheses is the token “~” , thetoken “1” , thetoken “(" , anidentifier (82.5), aliteral (82.5.3), or any
keyword (82.5.2) except is.

The above rules mean that only if the construct is unambiguously a cast-expression is it considered a cast-
expression.

The term “correct grammar” above means only that the sequence of tokens must conform to the particular
grammatical production. It specifically does not consider the actual meaning of any constituent identifiers.
For example, if x andy areidentifiers, then x .y is correct grammar for atype, even if x.y doesn't actually
denote a type.

From the disambiguation rulesit follows that, if x and y areidentifiers, (x)y, (x) (y),and (x) (-y) are
cast-expressions, but (x)-y is not, even if x identifies atype. However, if x is a keyword that identifies a
predefined type (such as int), then al four forms are cast-expressions (because such a keyword could not
possibly be an expression by itsdlf).

7.7 Arithmetic operators
The=*, /7, %, +, and — operators are called the arithmetic operators.

multipli cative-expression:
unary-expression
multiplicative-expression * unary-expression
multiplicative-expression / unary-expression
multiplicative-expression % unary-expression
additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression — multiplicative-expression

7.7.1 Multiplication operator

For an operation of theform x * y, binary operator overload resolution (87.2.4) is applied to select a
specific operator implementation. The operands are converted to the parameter types of the selected
operator, and the type of the result is the return type of the operator.

The predefined multiplication operators are listed below. The operators al compute the product of x and y.

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

Integer multiplication:

int operator *(int x, int y);

uint operator *(uint x, uint y);

long operator *(long x, long y);

ulong operator *(ulong x, ulong y);

In achecked context, if the product is outside the range of the result type, an OverflowException is
thrown. In an unchecked context, overflows are not reported and any significant high-order bits of the
result are discarded.

Foating-point multiplication:

float operator *(float x, float y);

double operator *(double x, double y);

The product is computed according to the rules of IEEE 754 arithmetic. The following table lists the results
of al possible combinations of nonzero finite values, zeros, infinities, and NaN'’s. Inthetable, x and y are
positive finite values. z isthe result of x * y. If the result istoo large for the destination type, z is infinity.
If the result istoo small for the destination type, z is zero.

+y -y +0 -0 +8 -8 Na

N

+X z -7 +0 -0 +8 -8 Na
N

—X -z b4 -0 +0 -8 +8 Na
N

+0 +0 -0 +0 -0 Na Na Na
N N N

-0 -0 +0 -0 +0 Na Na Na
N N N

+8 +8 -8 Na Na +8 -8 Na
N N N

-8 -8 +8 Na Na -8 +8 Na
N N N

Na Na Na Na Na Na Na Na
N N N N N N N N

Decimal multiplication:

decimal operator *(decimal x, decimal y);

If the resulting value is too large to represent in the decimal format, an OverflowException isthrown.
If the result value is too small to represent in the decimal format, the result is zero.

7.7.2 Division operator

For an operation of the formx / y, binary operator overload resolution (87.2.4) is applied to select a
specific operator implementation. The operands are converted to the parameter types of the selected
operator, and the type of the result is the return type of the operator.

The predefined division operators are listed below. The operators al compute the quotient of x and y.
Integer division:

int operator /(int x, int y);

uint operator /guint X, uint y;;

long operator /(long x, long y);
ulong operator /(ulong x, ulong y);

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 115

C# LANGUAGE REFERENCE

116

If the value of the right operand is zero, aDivideByZeroException isthrown.

The division rounds the result towards zero, and the absolute value of the result is the largest possible
integer that is less than the absolute value of the quotient of the two operands. The result is zero or positive
when the two operands have the same sign and zero or negative when the two operands have opposite signs.

If the left operand is the maximum negative int or long and the right operand is—1, an overflow occurs.
In achecked context, this causes an OverflowException to bethrown. In an unchecked context, the
overflow is not reported and the result is instead the value of the left operand.

Floating point division:

float operator /(float x, float y);
double operator /(double x, double y);

The quotient is computed according to the rules of IEEE 754 arithmetic. The following table lists the results
of al possible combinations of nonzero finite values, zeros, infinities, and NaN’s. Inthetable, x and y are
positive finite values. z is the result of x / . If the result istoo large for the destination type, z is infinity.

If the result istoo small for the destination type, z is zero.

+y -y +0 -0 +8 -8 Na

N

+X z -z +8 -8 +0 -0 Na
N

—X -7 z -8 +8 -0 +0 Na
N

+0 +0 -0 Na Na +0 -0 Na
N N N

-0 -0 +0 Na Na -0 +0 Na
N N N

+8 +8 -8 +8 -8 Na Na Na
N N N

-8 -8 +8 -8 +8 Na Na Na
N N N

Na Na Na Na Na Na Na Na
N N N N N N N N

Decimal division:
decimal operator /(decimal x, decimal y);

If the value of the right operand is zero, aDivideByZeroException isthrown. If the resulting valueis
too large to represent in thedecimal format, an OverflowException isthrown. If the result valueis too
small to represent in the decimal format, the result is zero.

7.7.3 Remainder operator

For an operation of theform x %y, binary operator overload resolution (87.2.4) is applied to select a
specific operator implementation. The operands are converted to the parameter types of the selected
operator, and the type of the result is the return type of the operator.

The predefined remainder operators are listed below. The operators all compute the remainder of the
divison between x and y.

Integer remainder:

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

int operator %(int x, int y);

int operator %(uint x, uint y);

long operator %(long x, long y);

ulong operator %(ulong x, ulong y);

The result of x %y isthe value produced by x — (x 7 y) *y. If y iszero, aDivideByZeroException is
thrown. The remainder operator never causes an overflow.

Floating-point remainder:

float operator %(float x, float y);
double operator %(double x, double y);

The following table lists the results of al possible combinations of nonzero finite values, zeros, infinities,
and NaN'’s. In the table, x and y are positive finite values. z isthe result of x % y and is computed as x — n
*y, wheren isthe largest possible integer that is less than or equal to x /7 y. This method of computing the

remainder is analogous to that used for integer operands, but differs from the IEEE 754 definition (in which
nistheinteger closest to x 7 y).

+y -y +0 -0 +8 -8 Na

N

+X z z Na Na X X Na
N N N

—X -z -z Na Na —X —X Na
N N N

+0 +0 +0 Na Na +0 +0 Na
N N N

-0 -0 -0 Na Na -0 -0 Na
N N N

+8 Na Na Na Na Na Na Na
N N N N N N N

-8 Na Na Na Na Na Na Na
N N N N N N N

Na Na Na Na Na Na Na Na
N N N N N N N N

Decimal remainder:
decimal operator %(decimal x, decimal y);

If the value of the right operand is zero, aDivideByZeroException isthrown. If the resulting value is
too large to represent in thedecimal format, an OverflowException isthrown. If the result valueis too
small to represent in the decimal format, the result is zero.

7.7.4 Addition operator

For an operation of theform x + y, binary operator overload resolution (87.2.4) is applied to select a
specific operator implementation. The operands are converted to the parameter types of the selected
operator, and the type of the result is the return type of the operator.

The predefined addition operators are listed below. For numeric and enumeration types, the predefined
addition operators compute the sum of the two operands. When one or both operands are of type string, the
predefined addition operators concatenate the string representation of the operands.

Integer addition:

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 117

C# LANGUAGE REFERENCE

118

int operator +(int x, int y);

uint operator +(uint x, uint y);

long operator +(long x, long y);

ulong operator +(ulong x, ulong y);

In achecked context, if the sum is outside the range of the result type, an OverflowException is
thrown. In an unchecked context, overflows are not reported and any significant high-order bits of the
result are discarded.

Hoating-point addition:

float operator +(float x, float y);

double operator +(double x, double y);

The sum is computed according to the rules of IEEE 754 arithmetic. The following table lists the results of
all possible combinations of nonzero finite values, zeros, infinities, and NaN'’s. Inthetable, x and y are
nonzero finite values, and z isthe result of x + y. If x and y have the same magnitude but opposite signs, z
is positive zero. If x +y istoo large to represent in the destination type, z is an infinity with the same sign
asx +y. If x + yistoo small to represent in the destination type, z is a zero with the same sign asx + .

y +0 -0 +8 -8 Na

N

X z X X +8 -8 Na
N

+0 y +0 +0 +8 -8 Na
N

-0 y +0 -0 +8 -8 Na
N

+8 +8 +8 +8 +8 Na Na
N N

-8 -8 -8 -8 Na -8 Na
N N

Na Na Na Na Na Na Na
N N N N N N N

Decimal addition:

decimal operator +(decimal x, decimal y);
If the resulting value is too large to represent in the decimal format, an OverflowException isthrown.
If the result value is too small to represent in the decimal format, the result is zero.

Enumeration addition. Every enumeration type implicitly provides the following predefined operators,
whereE isthe enum type, and U is the underlying type of E:

E operator +(E x, U y);
E operator +(U x, E y);

The operators are evaluated exactly as (E) ((U)x + (V)y).
String concatenation:;

string operator +(string x, string y);
string operator +(string X, object y);
string operator +(object x, string y);

The binary + operator performs string concatenation when one or both operands are of type string. If an
operand of string concatenation is null 1, an empty string is substituted. Otherwise, any non-string argument

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

is converted to its string representation by invoking the virtual ToString() method inherited from type
object. If ToString() returns nul 1, an empty string is substituted.

The result of the string concatenation operator is a string that consists of the characters of the left operand

followed by the characters of the right operand. The string concatenation operator never returnsanul I
value. An OutOfMemoryException may be thrown if there is not enough memory available to alocate

the resulting string.

Delegate concatenation. Every delegate type implicitly provides the following predefined operator,
whereD is the del egate type:

D operator +(D x, D y);

7.7.5 Subtraction operator

For an operation of theform x —y, binary operator overload resolution (87.2.4) is applied to select a
specific operator implementation. The operands are converted to the parameter types of the selected
operator, and the type of the result is the return type of the operator.

The predefined subtraction operators are listed below. The operators al subtract y from x.
Integer subtraction:

int operator —(int x, int y);

uint operator —(uint x, uint y);

long operator —(long x, long y);

ulong operator —(ulong x, ulong y);

In achecked context, if the difference is outside the range of the result type, an OverflowException is

thrown. In an unchecked context, overflows are not reported and any significant high-order bits of the
result are discarded.

Foating-point subtraction:

float operator —(float x, float y);

double operator —(double x, double y);

The difference is computed according to the rules of |EEE 754 arithmetic. The following table lists the
results of all possible combinations of nonzero finite values, zeros, infinities, and NaN’s. In the table, x and
y are nonzero finite values, and z isthe result of x — y. If x and y areequdl, z is positive zero. If x -y is
too large to represent in the destination type, z isan infinity with thesamesignas x — y. If x — y istoo

small to represent in the destination type, z isazero with thesamesignasx —y.

y +0 -0 +8 -8 Na

N

X z X X -8 +8 Na
N

+0 -y +0 +0 -8 +8 Na
N

-0 -y -0 +0 -8 +8 Na
N

+8 +8 +8 +8 Na +8 Na
N N

-8 -8 -8 -8 -8 Na Na
N N

Na Na Na Na Na Na Na
N N N N N N N

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 119

C# LANGUAGE REFERENCE

120

Decimal subtraction:

decimal operator —(decimal x, decimal y);
If the resulting value istoo large to represent in the decimal format, an OverflowException isthrown.
If the result value is too small to represent in the decimal format, the result is zero.

Enumeration subtraction. Every enumeration type implicitly provides the following predefined operator,
whereE isthe enum type, and U isthe underlying type of E:

U operator —(E x, E y);

This operator is evaluated exactly as (U) ((U)x — (U)y). In other words, the operator computes the
difference between the ordinal values of x and y, and the type of the result is the underlying type of the
enumeration.

E operator —(E x, U y);

This operator is evaluated exactly as (E) ((U)x —y). In other words, the operator subtracts avalue from
the underlying type of the enumeration, yielding a value of the enumeration.

Deegate removal. Every delegate type implicitly provides the following predefined operator, whereD is
the delegate type:

D operator —(D x, D y);

7.8 Shift operators
The << and >> operators are used to perform bit shifting operations.
shift-expression:

additive-expression

shift-expression << additive-expression

shift-expression >> additive-expression
For an operation of theform x << count or x >> count, binary operator overload resolution (87.2.4) is
applied to select a specific operator implementation. The operands are converted to the parameter types of
the selected operator, and the type of the result is the return type of the operator.

When declaring an overloaded shift operator, the type of the first operand must always be the class or struct
containing the operator declaration, and the type of the second operand must dways beint.

The predefined shift operators are listed below.
Shift left:

int operator <<(int x, int count);
uint operator <<(uint x, int count);
long operator <<(long x, int count);
ulong operator <<(ulong x, int count);

The << operator shifts x left by a number of bits computed as described below.
The high-order bits of x are discarded, the remaining bits are shifted |eft, and the low-order empty bit
positions are set to zero.

Shift right:

int operator >>(int x, int count);
uint operator >>(uint x, int count);
long operator >>(long x, int count);
ulong operator >>(ulong x, int count);

The >> operator shifts x right by a number of bits computed as described below.

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

When x is of type int or long, the low-order bits of x are discarded, the remaining bits are shifted right,
and the hightorder empty hit positions are set to zero if x is non-negative and set to oneif x is negative.

When x is of type uint or ulong, the low-order bits of x are discarded, the remaining bits are shifted right,
and the highrorder empty bit positions are set to zero.

For the predefined operators, the number of bits to shift is computed as follows:

When the type of x is int or uint, the shift count is given by the low -order five bits of count. In other
words, the shift count is computed from count & Ox1F.

When the type of x is long or ulong, the shift count is given by the low-order six bits of count. In
other words, the shift count is computed from count & 0x3F.

If the resulting shift count is zero, the shift operatorsis simply return the value of x.

Shift operations never cause overflows and produce the same results in checked and unchecked contexts.

When the left operand of the >> operator is of asigned integral type, the operator performs an arithmetic
shift right wherein the value of the most significant bit (the sign bit) of the operand is propagated to the
high-order empty bit positions. When the |eft operand of the >> operator is of an unsigned integral type, the
operator performs a logical shift right wherein high-order empty bit positions are aways set to zero. To
perform the opposite operation of that inferred from the operand type, explicit casts can be used. For
example, if x isavariable of type int, the operation (int) ((uint)x>>y) peformsalogica shift right
of x.

7.9 Relational operators
The==, 1=, <, >,<=,>=, and is operators are caled the relationa operators.

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression
relational-expression is reference-type

equality -expression:
relational-expression

equality-expression == relational-expression
equality-expression = relational-expression

The is operator is described in §7.9.9.

The==, 1=, <, >, <= and >= operators as a group are called the comparison operators. For an operation of
the form x op y, whereop is a comparison operator, overload resolution (87.2.4) is applied to select a
specific operator implementation. The operands are converted to the parameter types of the selected
operator, and the type of the result is the return type of the operator.

The predefined comparison operators are described in the following sections. All predefined comparison
operators return a result of type bool, as described in the following table.

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 121

C# LANGUAGE REFERENCE

Opera Result
tion
X == true if xisequa to y, false otherwise
x1l=y true if x isnot equa to y, false otherwise
X<y true if x islessthan y, false otherwise
X>y true if xisgreater thany, false otherwise
X<=y true if x islessthan or equal to y, false otherwise
X>=y true if xisgreater than or equal toy, false otherwise

122

7.9.1 Integer comparison operators
The predefined integer comparison operators are;

bool operator ==(int x, int y);
bool operator ==(uint x, uint y);
bool operator ==(long x, long y);
bool operator ==(ulong x, ulong y);

bool operator !=(int x, int y);
bool operator !=(uint x, uint y);
bool operator !'=(long x, long y);
bool operator !'=(ulong x, ulong y);

bool operator <(int x, int y);
bool operator <(uint x, uint y);
bool operator <(long x, long y);
bool operator <(ulong x, ulong y);

bool operator >(int x, int y);
bool operator >(uint x, uint y);
bool operator >(long x, long y);
bool operator >(ulong x, ulong y);

bool operator <=(int x, int y);
bool operator <=(uint x, uint y);
bool operator <:Elong x, long y);
bool operator <=(ulong x, ulong y);

bool operator >=(int x, int y);
bool operator >=(uint X, uint y);
bool operator >=(long x, long y);
bool operator >=(ulong x, ulong y);

Each of these operators compare the numeric values of the two integer operands and return abool vaue
that indicates whether the particular relation is true or false.

7.9.2 Floating-point comparison operators

The predefined floating-point comparison operators are:

bool operator ==(float x, float y);
bool operator ==(double x, double y);

bool operator !'=(float x, float y);
bool operator !'=(double x, double y);

bool operator <(float x, float y);
bool operator <(double x, double y);

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

bool operator >(float x, float y);
bool operator >(double x, double y);

bool operator <=(float x, float y);
bool operator <=(double x, double y);

bool operator >=(float x, float y);
bool operator >=(double x, double y);

The operators compare the operands according to the rules of the IEEE 754 standard:
If either operand is NaN, theresult is false for al operators except =, and true for the 1= operator.
For any two operands, x =y always produces the same result as ! (x ==y). However, when one or
both operands are NaN, the <, >, <=, and >= operators do not produce the same results as the logica

negation of the opposite operator. For example, if either of x and y isNaN, then x <y isfalse,
but 1 (x >=y) istrue.

When neither operand is NaN, the operators compare the values of the two floating-point operands with
respect to the ordering
8 < -—-max < ... < —min < 0.0 == +0.0 < +min < ... < +max < +8

where min and max are the smallest and largest positive finite values that can be represented in the given
floating-point format. Notable effects of this ordering are:

Negative and positive zero are considered equal.
A negative infinity is considered less than all other values, but equal to another negative infinity.
A positive infinity is considered greater than all other values, but equal to another positive infinity.

7.9.3 Decimal comparison operators

The predefined decimal comparison operators are:
bool operator ==(decimal x, decimal y);
bool operator !=(decimal x, decimal y);
bool operator <(decimal x, decimal y);
bool operator >(decimal x, decimal y);
bool operator <=(decimal x, decimal y);
bool operator >=(decimal x, decimal y);

Each of these operators compare the numeric values of the two decimal operands and return a bool vaue
that indicates whether the particular relation is true or false.

7.9.4 Boolean equality operators
The predefined boolean equality operators are:

bool operator ==(bool x, bool y);
bool operator !'=(bool x, bool y);

Thereault of == istrue if both x and y are true or if both x and y are false. Otherwise, theresult is
false.

Theresault of 1=isTalse if both x and y are true or if both x and y are false. Otherwise, theresultis
true. When the operands are of type bool, the 1= operator produces the same result as the ~ operator.

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 123

C# LANGUAGE REFERENCE

124

7.9.5 Enumeration comparison operators

Every enumeration type implicitly provides the following predefined canparison operators:
bool operator ==(E x, E y);

bool operator '=(E x, E y);

bool operator <(E x, E y);

bool operator >(E x, E y);

bool operator <=(E x, E y);

bool operator >=(E x, E y);

Theresult of evaluating x op y, where x and y are expressions of an enumeration type E with an underlying
type U, and op is one of the comparison operators, is exactly the same as evaluating ((U)x) op ((U)y). In
other words, the enumeration type comparison operators simply compare the underlying integral values of
the two operands.

7.9.6 Reference type equality operators

The predefined reference type equality operators are:

bool operator ==(object x, object y);

bool operator !'=(object x, object y);

The operators return the result of comparing the two references for equality or norrequality.

Since the predefined reference type equality operators accept operands of type object, they apply to al
types that do not declare applicable operator == and operator = members. Conversely, any applicable
user-defined equality operators effectively hide the predefined reference type equality operators.

The predefined reference type equality operators require the operands to be reference-type values or the
valuenul 1, and furthermore require that an implicit conversion exists from the type of either operand to

the type of the other operand. Unless both of these conditions are true, a compile-time error occurs. Notable
implications of these rules are:

It isan error to use the predefined reference type equality operators to compare two references that are

known to be different at compile-time. For example, if the compile-time types of the operands are two
class types Aand B, and if neither A nor B derives from the other, then it would be impossible for the

two operands to reference the same object. Thus, the operation is considered a compile-time error.

The predefined reference type equality operators do not permit value type operands to be compared.
Therefore, unless a struct type declares its own equality operators, it is not possible to compare values
of that struct type.

The predefined reference type equality operators never cause boxing operations to occur for their
operands. It would be meaningless to perform such boxing operations, since references to the newly
allocated boxed instances would necessarily differ from all other references.

For an operation of theform x ==y or x =y, if any applicable operator == or operator 1= exists, the
operator overload resolution (87.2.4) rules will select that operator instead of the predefined reference type
equality operator. However, it is always possible to select the reference type equality operator by explicitly
casting one or both of the operands to type object. The example

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

class Test

{
static void Main(Q) {
string s = "Test";
string t = string.Copy(s);
Console._WriteLine(s == t);
Console.WriteLine((object)s == t);
Console._WriteLine(s == (object)t);
Console._WriteLine((object)s == (object)t);
}
}
produces the output
True
False
False
False

The s and t variablesrefer to two distinct string instances containing the same characters. Thefirst
comparison outputs True because the predefined string equaity operator (87.9.7) is selected when both
operands are of type string. Theremaining comparisons al output Fal se because the predefined
reference type equality operator is selected when one or both of the operands are of type object.

Note that the above technique is not meaningful for value types. The example

class Test

static void Main(Q {
int 1 = 123;
int j = 123;
3 Console._WriteLine((object)i == (object)j);
}
outputs Fal se because the casts create references to two separate instances of boxed int vaues.
7.9.7 String equality operators
The predefined string equality operators are:
bool operator ==(string x, string y);
bool operator !=(string x, string y);
Two string vaues are considered equa when one of the following is true:

Both valuesare nul I.

Both values are non-null references to string instances that have identica lengths and identical
charactersin each character position.

The string equality operators compare string values rather than string references. When two separate string

instances contain the exact same sequence of characters, the values of the strings are equal, but the
references are different. As described in §87.9.6, the reference type equality operators can be used to
compare string references instead of string values.

7.9.8 Delegate equality operators

Every delegate type implicitly provides the following predefined comparison operators, where D isany
delegate type:

bool operator ==(D x, D y);

bool operator '=(D x, D y);

Copyright O Microsoft Corporation1999-2000. All Rights Reserved.

125

C# LANGUAGE REFERENCE

126

7.9.9 The is operator

The is operator is used to check whether the run-time type of an object is compatible with agiven type. In
an operation of theform e is T, e must be an expression of areference-type and T must be a reference-type.
If thisis not the case, a compile-time error occurs.

The operation e is T returns true if e isnot null and if an implicit reference conversion (86.1.4) from
the run-time type of the instance referenced by e to the type given by T exigts. In other words, e is T
checksthat e isnot null 1 and that a cast-expression (87.6.8) of theform (T) (e) will complete without
throwing an exception.

If e is T isknown a compile-time to aways be true or dways be false, acompile-time error occurs.
The operation is known to always be true if an implicit reference conversion exists from the compile-time
type of e to T. The operation is known to always be false if no implicit or explicit reference conversion
exists from the compile-time type of eto T.

7.10 Logical operators
The &, ~, and | operators are called the logical operators.

and-expression:
equality-expression
and-expression & equality-expression

exclusive-or -expression:
and-expression
exclusive-or-expression ~ and-expression

inclusive-or-expression:

exclusive-or-expression

inclusive-or-expression | exclusive-or-expression
For an operation of theform x opy, where ap is one of the logica operators, overload resolution (§7.2.4) is
applied to select a specific operator implementation. The operands are converted to the parameter types of
the selected operator, and the type of the result is the return type of the operator.

The predefined logical operators are described in the following sections.

7.10.1 Integer logical operators
The predefined integer logical operators are:

int operator &(int x, int y);

uint operator &Quint x, uint y);
long operator &(long X, Ion% v);
ulong operator &(ulong x, ulong y);

int operator |(int x, int y);

uint operator |(uint x, uint y);
long operator |(long x, long y);
ulong operator |(ulong x, ulong y);

int operator ~(int x, int y);

uint operator ~(uint x, uint y);

long operator ~(long x, long y);

ulong operator ~(ulong x, ulong y);

The & operator computes the bitwise logical AND of the two operands, the | operator computes the bitwise
logica OR of the two operands, and the ~ operator computes the bitwise logica exclusive OR of thetwo
operands. No overflows are possible from these operations.

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

7.10.2 Enumeration logical operators
Every enumeration type E implicitly provides the following predefined logical operators.

E operator &(E x, E y);
E operator |(E X, E y);
E operator ~"(E X, E y);

Theresult of evaluating x op y, where x and y are expressions of an enumeration type E with an underlying
type U, and op is one of the logical operators, is exactly the same as evaluating (E)((U)x) op ((V)y).In
other words, the enumeration type logical operators simply perform the logical operation on the underlying
type of the two operands.

7.10.3 Boolean logical operators

The predefined boolean logica operators are:

bool operator &(bool x, bool y);

bool operator |(bool x, bool y);

bool operator ~(bool x, bool y);

Thereault of x & y istrue if both x and y are true. Otherwise, the result isfalse.
Theresult of x | y istrue if either x or y istrue. Otherwisg, the result is Fal se.

Theresult of x ~y istrue if x istrue andy isfalse, or x isfalse and y is true. Otherwise, the result
is false. When the operands are of type bool, the ~ operator computes the same result as the 1= operator.

7.11 Conditional logical operators

The && and | | operators are called the conditional logic al operators. They are at times also called the
“short-circuiting” logical operators.

conditional-and-expression:
inclusive-or -expression
conditional-and-expression && inclusive-or-expresson

conditional-or -expression:
conditional-and-expression
conditional-or-expression || conditional-and-expression

The && and | | operators are conditiona versions of the & and | operators:.
Theoperation x && y corresponds to the operation x & y, except that y is evauated only if x istrue.
Theoperation x | | y corresponds to the operation x | y, except that y is evauated only if x isfalse.

An operation of theform x && y or x || vy is processed by applying overload resolution (§87.2.4) asif the
operation was written x & y or x | y. Then,

If overload resolution fails to find a single best operator, or if overload resolution selects one of the
predefined integer logical operators, an error occurs.

Otherwise, if the selected operator is one of the predefined boolean logical operators (87.10.2), the
operation is processed as described in §7.11.1

Otherwise, the selected operator is a user-defined operator, and the operation is processed as described
in8§7.11.2

Itis not possible to directly overload the conditional logical operators. However, because the conditiona
logica operators are evaluated in terms of the regular logical operators, overloads of the regular logical

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 127

C# LANGUAGE REFERENCE

operators are, with certain restrictions, also considered overloads of the conditional logical operators. This
is described further in 87.11.2

7.11.1 Boolean conditional logical operators

When the operands of && or | | are of type bool, or when the operands are of types that do not define an
applicable operator & or operator |, but do define implicit conversionsto bool, the operation is
processed as follows:

The operation x && y isevauated as x? y: false. In other words, x isfirst evaluated and converted to
typebool. Then, if x istrue, y isevauated and converted to type bool, and this becomes the result
of the operation. Otherwise, the result of the operation is false.

Theoperation x | | vy isevaluated as x? true: y. In other words, x isfirst evaluated and converted to
type bool. Then, if x is true, the result of the operation is true. Otherwise, y is evaluated and
converted to typebooll, and this becomes the result of the operation.

7.11.2 User-defined conditional logical operators

When the operands of && or | | are of typesthat declare an applicable user-defined operator & or
operator |, both of the following must be true, where T is the type in which the selected operator is
declared:

The return type and the type of each parameter of the selected operator must be T. In other words, the
operator must compute the logical AND or the logica OR of two operands of type T, and must return a
result of type T.

T must contain declarations of operator true and operator false.

A compile-time error occurs if either of these requirementsis not satisfied. Otherwise, the && or | |
operation is evauated by combining the user-defined operator true or operator false withthe
selected user-defined operator:

Theoperation x && y isevaluated as T. false(x)? x: T.&(X, y), whereT.false(x) isan
invocation of the operator false declared in T, and T.&(x, y) isaninvocation of the selected
operator &. In other words, x isfirst evaluated and operator false isinvoked on the result to
determine if x is definitely false. Then, if x is definitely false, the result of the operation is the value
previoudy computed for x. Otherwise, y is evaluated, and the selected operator & isinvoked on the
value previoudy computed for x and the value computed for y to produce the result of the operation.

The operation x || v isevaluated as T. true(x)? x: T. | (x, y), where T. true(x) isaninvaocation
of the operator truedeclaredin T, and T. | (x, y) isan invocation of the seected operator |.In
other words, x isfirst evaluated and operator true isinvoked on the result to determineif x is
definitely true. Then, if x is definitely true, the result of the operation is the value previousy computed
for x. Otherwise, y is evauated, and the selected operator | isinvoked on the value previoudy
computed for x and the value computed for y to produce the result of the operation.

In either of these operations, the expression given by x is only evauated once, and the expression given by
y is ether not evaluated or evaluated exactly once.

For an example of atype that implements operator true and operator false, see §11.3.2

7.12 Conditional operator
The ?: operator is called the conditional operator. It is at times also called the ternary operator.

128 Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

conditional-expression:
conditional-or -expression
conditional-or-expression ? expression : expresson

A conditiona expression of the form b? x: y first evaluates the condition b. Then, if b istrue, x is
evaluated and becomes the result of the operation. Otherwise, y is evaluated and becomes the result of the
operation. A conditional expression never evaluates both x and y.

The conditional operator is right-associative, meaning that operations are grouped from right to left. For
example, an expression of theform a? b: c? d: e isevauated as a? b: (c?d: e).

The first operand of the ?: operator must be an expression of atype that can be implicitly converted to
bool, or an expression of atype that implementsoperator true. If neither of these requirements are
satisfied, acompile-time error occurs.

The second and third operands of the ?: operator control the type of the conditional expression. Let X and
Y be the types of the second and third operands. Then,

If X and Y are the same type, then thisis the type of the conditional expression.

Otherwise, if an implicit conversion (86.1) existsfrom X to Y, but not from Y to X, then Y is the type of
the conditional expression.

Otherwise, if an implicit conversion (86.1) existsfrom Y to X, but not from X to Y, then X is the type of
the conditional expression.

Otherwise, no expression type can be determined, and a compile-time error occurs.
The run-time processing of a conditional expression of the form b? x: y consists of the following steps:
First, b isevauated, and the bool value of b is determined:

If an implicit conversion from the type of b to bool exists, then thisimplicit conversion is performed to
produce abool value.

Otherwise, the operator true defined by the type of b isinvoked to produce abool vaue.

If the bool value produced by the step above is true, then x is evauated and converted to the type of
the conditional expression, and this becomes the result of the conditional expression.

Otherwise, y isevaluated and converted to the type of the conditiona expression, and this becomes the
result of the conditional expression.

7.13 Assignment operators
The assignment operators assign a new value to a variable, a property, or an indexer el ement.

assignment:
unary-expression assignment-operator expression

assignment-operator: one of

= += -= *= /= %= &= I= N= <<= >>=
The left operand of an assignment must be an expression classified as a variable, a property access, or an
indexer access.

The = operator is called the simple assignment operator. It assigns the value of the right operand to the
variable, property, or indexer element given by the left operand. The sSimple assignment operator is
described in §7.13.1

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 129

C# LANGUAGE REFERENCE

The operators formed by prefixing a binary operator with an = character are called the compound
assignment operators These operators perform the indicated operation on the two operands, and then
assign the resulting vaue to the variable, property, or indexer element given by the left operand. The
compound assignment operators are described in §7.13.2

The assignment operators are right-associative, meaning that operations are grouped from right to left. For
example, an expression of theform a =b = c isevduatedas a = (b = ¢).

7.13.1 Simple assignment

The = operator is called the Smple assignment operator. In a simple assignment, the right operand must be
an expression of atype that isimplicitly convertible to the type of the left operand. The operation assigns
the value of the right operand to the variable, property, or indexer element given by the left operand.

The result of a simple assignment expression is the value assigned to the left operand. The result has the
same type as the left operand and is always classified as a value.

If the left operand is a property or indexer access, the property or indexer must have a set accessor. If this
is not the case, a compile-time error occurs.

The run-time processing of a simple assignment of the form x = y congists of the following steps:
If X isclassified asavariable:
x is evduated to produce the variable.
y isevduated and, if required, converted to the type of x through an implicit conversion (86.1).

If the variable given by x is an array element of a reference-type, arun-time check is performed to
ensure that the value computed for y is compatible with the array instance of which x is an element.
The check succeedsif y isnul 1, or if an implicit reference conversion (86.1.4) exists from the actual
type of the instance referenced by y to the actua element type of the array instance containing x.
Otherwise, an ArrayTypeMismatchException isthrown

The value resulting from the evaluation and converdon of y is stored into the location given by the
evaluation of x.

If x isclassified as a property or indexer access:

The instance expression (if x isnot static) and the argument list (if x isan indexer access) associated
with x are evaluated, and the results are used in the subsequent set accessor invocation.

y isevauated and, if required, converted to the type of x through an implicit conversion (§6.1).
The set accessor of x isinvoked with the value computed for y asits value argument.

The array co-variancerules(812.5) permit a value of an array type A[] to be a reference to an instance of
an array type B[], provided an implicit reference conversion exists from B to A. Because of these rules,
assignment to an array element of a reference-type requires a run-time check to ensure that the value being
assigned is compatible with the array instance. In the example

string[] sa = new string[10];
object[] oa = sa;

oa[0] = null; // Ok
oa[l] = "Hello"; // Ok
oa[2] = new ArrayList(); // ArrayTypeMismatchException

the last assignment causes an ArrayTypeMismatchException to be thrown because an instance of
ArraylList cannot be stored in an element of astring[].

130 Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

When a property or indexer declared in a struct-type is the target of an assignment, the instance expression
associated with the property or indexer access must be classified as a variable. If the instance expression is
classified as a value, a compile-time error occurs.

Given the declarations:

struct Point

{
int x, y;
public Point(int x, int y) {
this.x = X;
this.y = y;

public int X {
get { return x; }
set { x = value; }

}

public int Y {
get { return y; }
set { y = value; }
}
}

struct Rectangle

{

Point a, b;

public Rectangle(Point a, Point b) {
this.a = a;
this.b = b;

b

public Point A {
get { return a; }
set { a = value; }

public Point B {
get { return b; }
set { b = value; }
b
}

in the example

Point p = new Point();

p-X = 100;

p.Y = 100;

Rectangle r = new Rectangle();
r.A = new Point(10, 10);

r-B = p;

the assgnmentsto p. X, p.Y, r.A,and r_B are permitted because p and r are variables. However, in the
example

Rectangle r = new Rectangle();

r.AX = ;

r.A.Y = 10;

r.B.X = 100;

r.B.Y = 100;

the assgnments are dl invalid, since r .A and r . B are not variables.

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 131

C# LANGUAGE REFERENCE

132

7.13.2 Compound assignment

An operation of the form x op=y is processed by applying binary operator overload resolution (§7.2.4) as
if the operation was written x op y. Then,

If the return type of the selected operator isimplicitly convertible to the type of x, the operation is
evauated asx = x 0p y, except that x is evaluated only once.

Otherwise, if the selected operator is a predefined operator, if the return type of the selected operator is
explicitly convertible to the type of x, and if y isimplicitly convertible to the type of x, then the
operation is evaluated as x = (T) (x op y), whereT isthe type of x, except that x is evaluated only
once.

Otherwise, the compound assignment is invalid, and a compile-time error occurs.

The term “evaluated only once” meansthat in the evaluation of x op y, the results of any constituent
expressions of x are temporarily saved and then reused when performing the assignment to x. For example,
intheassignment AQ[B(] +=C(Q), where A isamethod returning int[], and B and C are methods
returning int, the methods are invoked only once, in the order A, B, C.

When the left operand of a compound assignment is a property access or indexer access, the property or
indexer must have both a get accessor and a set accessor. If thisis not the case, a compile-time error
ocCurs.

The second rule above permits x op=y to be evaluated as x = (T) (x 0p y) in certain contexts. The rule
exists such that the predefined operators can be used as compound operators when the left operand is of

type sbyte, byte, short,ushort, or char. Even when both arguments are of one of those types, the
predefined operators produce a result of type int, as described in §7.2.6.2. Thus, without acast it would
not be possible to assign the result to the left operand.

The intuitive effect of the rule for predefined operatorsis simply that x op=y is permitted if both of x op y
and x = y are permitted. In the example

byte b = 0;

char ch = "\0";

int i = 0;

b += 1; // 0Ok

b += 1000; // Error, b = 1000 not permitted
b +=1i; // Error, b = i not permitted

b += (byte)i; // Ok

ch += 1; // Error, ch = 1 not permitted

ch += (char)l; /7 Ok
the intuitive reason for each error is that a corresponding simple assignment would also have been an error.

7.13.3 Event assignment

7.14 Expression
An expression is either aconditional-expression or an assignment

expression:
conditional-expression
assignment

7.15 Constant expressions
A constantexpressionis an expression that can be fully evaluated at compile-time.

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

constant-expression:
expression
The type of a constant expression can be one of the following: sbyte, byte, short, ushort, int, uint,

long,ulong, char, float, double,decimal,bool, string, any enumeration type, or the null type.
The following constructs are permitted in constant expressions:

Literals (including thenul I literd).

Referencesto const members of class and struct types.

References to members of enumeration types.

Parenthesized sub-expressions.

Cast expressions, provided the target type is one of the types listed above.
The predefined +, —, 1, and ~ unary operators.

Thepredefined +, —, *, 7, %, <<, >>, &, |, ™ &&, | |, ==, 1=, <, >, <=, and => binary operators, provided
each operand is of atype listed above.

The ?: conditional operator.

Whenever an expression is of one of the types listed above and contains only the constructs listed above,
the expression is evaluated at compile-time. Thisistrue even if the expression is a sub-expression of a
larger expression that contains non-constant constructs.

The compile-time evaluation of constant expressions uses the same rules as run-time evauation of non-
constant expressions, except that where run-time eval uation would have thrown an exception, compile-time
evaluation causes acompile-time error to occur.

Unless a constant expression is explicitly placed in an unchecked context, overflows that occur in
integral-type arithmetic operations and conversions during the compile-time evaluation of the expression
always cause compile-time errors (§7.5.13).

Congtant expressions occur in the contexts listed below. In these contexts, an error occurs if an expression
cannot be fully evaluated at compile-time.

Constant declarations (§10.3).

Enumeration member declarations (§14.2).
case labds of aswitch saement (88.7.2).
goto case Statements (§88.9.3).

Attributes (817).

An implicit constant expression conversion (§6.1.6) permits a constant expression of type int to be
converted to sbyte, byte, short, ushort, uint, or ulong, provided the vaue of the constant
expression is within the range of the destination type.

7.16 Boolean expressions
A booleanexpression is an expression that yields aresult of typebool.

boolean-expression:
expression

The controlling conditiona expression of an if-statement (88.7.1), while-statement (88.8.1), do-statement
(88.8.2), or for-statement (88.8.3) is a boolean-expression. The controlling conditional expression of the 2:

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 133

C# LANGUAGE REFERENCE

operator (87.12) follows the same rules as a bool ean-expression, but for reasons of operator precedenceis
classified as a conditional-or -expression.

A booleanexpression is required to be of atypethat can beimplicitly converted to bool or of atype that
implements operator true. If neither of these requirements are satisfied, a compile-time error occurs.

When a boolean expression is of atype that cannot be implicitly converted to bool but doesimplement
operator true, then following evaluation of the expression, the operator true implementation
provided by the typeisinvoked to produce a bool value.

The DBBool struct type in §11.3.2 provides an example of atype that implementsoperator true.

134 Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

8. Statements

C# provides a variety of statements. Most of these statements will be familiar to developers who have
programmed in C and C++.

statement:
|abel ed-statement

declaration-statement
embedded-statement

embedded-statement:
block
empty-statement
expression-statement
sel ection -statement
iter ation-statement
jump-statement
try-statement
checked-statement
unchecked-statement
lock-statement

The embedded-statement nonterminal is used for statements that appear within other statements. The use of
embedded-statement rather than statement excludes the use of declaration statements and |abeled statements
in these contexts. For example, the code

void F(bool b) {
if (b)
int i = 44;
}

isin error because an i ¥ statement requires an embedded-statement rather than astatement for itsif branch.
If this code were permitted, then the variable i would be declared, but it could never be used.

8.1 End points and reachability

Every statement hasan end point In intuitive terms, the end point of a statement is the location that
immediately follows the statement. The execution rules for composite statements (statements that contain
embedded statements) specify the action that is taken when control reaches the end point of an embedded
statement. For example, when control reaches the end point of a statement in ablock, control is transferred
to the next statement in the block.

If a statement can possibly be reached by execution, the statement is said to be reachable. Conversdly, if
thereis no possibility that a statement will be executed, the statement is said to be unreachable.

In the example

void FQ {
Console.WriteLine("'reachable'™);
goto Label;
Console.WriteLine("'unreachable™);
Label:
Console._WriteLine("'reachable™);

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 135

C# LANGUAGE REFERENCE

the second Console.WriteLine invocation is unreachable because there is no possibility that the
statement will be executed.

A warning is reported if the compiler determines that a statement is unreachable. It is specifically not an
error for a statement to be unreachable.

To determine whether a particular statement or end point is reachable, the compiler performs flow analysis
according to the reachability rules defined for each statement. The flow analysis takes into account the
values of constant expressions (87.15) that control the behavior of statements, but the possible values of
non-constant expressions are not considered. In other words, for purposes of control flow analysis, a non-
constant expression of a given typeis considered to have any possible value of that type.

In the example
void FQ {

const int i = 1;

if (i == 2) Console._WriteLine("unreachable™);
}

the boolean expression of the i f statement is a constant expression because both operands of the ==
operator are constants. The constant expression is evaluated at compile-time, producing the value fal se,
and the Console.WriteLine invocation is therefore considered unreachable. However, if i is changed to
be alocd variable
void FO {

int i = 1;

if (i == 2) Console.WriteLine("'reachable™);
}

the Console.WriteLine invocation is considered reachable, even though it will in reality never be
executed.

The block of afunction member is dways considered reachable. By successively evaluating the
reachability rules of each statement in ablock, the reachability of any given statement can be determined.

In the example
Void F(int x) {
Console._WriteLine(start");
if (x < 0) Console.WriteLine('negative');
the reachability of the second Console.WriteLine isdetermined as follows:

First, because the block of the F method is reachable, the first Console.WriteLine statement is
reachable.

Next, because the first Console.WriteLine statement is reachable, its end point is reachable.

Next, because the end point of the first Console.WriteLine statement isreachable, the i ¥ statement
isreachable.

Finally, because the boolean expression of the i ¥ statement does not have the constant value fal se, the
second Console.WriteLine statement isreachable.

There are two situations in which it is an error for the end point of a statement to be reachable:

Because the switch statement does not permit a switch section to “fall through” to the next switch
section, it isan error for the end point of the statement list of a switch section to be reachable. If this
error occurs, it istypicaly an indication that a break statement is missing.

136 Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

It isan error for the end point of the block of afunction member that computes a value to be reachable.
If this error occurs, it istypicaly an indication that a return statement is missing.

8.2 Blocks
A block permits multiple statements to be written in contexts where a single statement is expected.

block:
{ statementlisty 3}

A block consists of an optiona statement-list (88.2.1), enclosed in braces. If the statement list is omitted,
the block is said to be empty.

A block may contain declaration statements (88.5). The scope of alocal variable or constant declared in a
block extends from the declaration to the end of the block.

Within a block, the meaning of a name used in an expression context must always be the same (§7.5.2.7).
A block is executed as follows:
If the block is empty, contral is transferred to the end point of the block.

If theblock is not empty, control is transferred to the statement list. When and if control reaches the end
point of the statement list, control is transferred to the end point of the block.

The statement list of ablock is reachable if the block itself is reachable.

The end point of ablock is reachable if the block is empty or if the end point of the statement list is
reachable.

8.2.1 Statement lists

A statement list consists of one or more statements written in sequence. Statement lists occur in blocks
(88.2) and in switch-blocks(88.7.2).

statement-list:
statement
statement-list statement

A statement list is executed by transferring control to the first statement. When and if control reaches the
end point of a statement, control is transferred to the next statement. When and if control reaches the end
point of the last statement, control is transferred to the end point of the statement list.

A statement in astatement list is reachable if at least one of the fdlowing is true:
The gtatement is the first statement and the statement list itself is reachable.
The end point of the preceding statement is reachable.
The gtatement is a labeled statement and the labdl is referenced by a reachablegoto statement.
The end point of a statement list is reachable if the end point of the last statement in the list is reachable.

8.3 The empty statement
An empty-statement does nothing.

empty-statement:

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 137

C# LANGUAGE REFERENCE

138

An empty statement is used when there are no operations to perform in a context where a statement is
required.

Execution of an empty statement simply transfers control to the end point of the statement. Thus, the end
point of an empty statement is reachable if the empty statement is reachable.

An empty statement can be used when writing awhi e statement with a null body:

bool ProcessMessage() {---}

void ProcessMessages() {
while (ProcessMessage());

Also, an empty statement can be used to declare alabel just before the closing “}” of ablock:
void FQO {

if (done) goto exit;

exit: ;

}

8.4 Labeled statements

A labeled-statement permits a statement to be prefixed by alabel. Labeled statements are permitted blocks,
but are not permitted as embedded statements.

|abeled -statement:
identifier : statement

A labeled statement declares alabel with the name given by the identifier. The scope of alabel is the block
in which the labdl is declared, including any nested blocks. It is an error for two labels with the same name
to have overlapping scopes.

A label can be referenced from goto gtatements (8§ 8.9.3) within the scope of the label. This means that
goto statements can transfer control inside blocks and out of blocks, but never into blocks.

Labels have their own declaration space and do not interfere with other identifiers. The example

int F(int x) {
if (x >= 0) goto x;
X = -X;
X: return Xx;

}
isvalid and uses the name x as both a parameter and alabdl.

Execution of alabeled statement corresponds exactly to execution of the statement following the labdl.

In addition to the reachability provided by normal flow of control, alabeled statement is reachable if the
label is referenced by areachable goto statement.

8.5 Declaration statements
A declaration-statement declares alocal variable or constant. Declaration statements are permitted in
blocks, but are not permitted as embedded statements.

declaration-statement:
|ocal-variable-declaration
| ocal-constant-declaration

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

8.5.1 Local variable declarations
A local-variable-declaration declares one or more locd variables.

|ocal-variable-declaration:
type variable-declarators

variable-declarators:
variable-declarator
variable-declarators , variable-declarator

variable-declarator:

identifier

identifier = variable-initializer
variable-initializer:

expression

array-initializer
The type of alocal-variable-declaration specifies the type of the variables introduced by the declaration.
The typeisfollowed by alist of variable-declarator s, each of which introduces a new variable. A variable-
declarator consists of an identifier that names the variable, optionally followed by an “=" token and a
variable-initializer that givestheinitial value of the variable.

The value of aloca variable is obtained in an expression using a simple-name (87.5.2), and the value of a
local variableis modified using an assignment (87.13). A loca variable must be definitely assigned (85.3)
at each location where its value is obtained.

The scope of aloca variable starts immediately after its identifier in the declaration and extends to the end
of the block containing the declaration. Within the scope of aloca variable, it is an error to declare another
locd variable or constant with the same name.

A local variable declaration that declares multiple variables is equivalent to multiple declarations of single
variables with the same type. Furthermore, avariable initializer in alocal variable declaration corresponds
exactly to an assignment statement that is inserted immediately after the declaration.

The example
void FQO {
int x=1, y, z =x * 2;
}
corresponds exactly to

void FQ {
int x; X
int y;
int z; z = x * 2;

}

8.5.2 Local constant declarations
A local-constant-declaration declares one or more local constants.

| ocal-constant-declaration:
const type constantdeclarators

constant-declarators:
constant-declarator
constant-declarators , constantdeclarator

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 139

C# LANGUAGE REFERENCE

140

constant-declarator:

identifier = constant-expression
The type of alocal-constant-declaration specifies the type of the constants introduced by the declaration.
The typeisfollowed by alist of constant-declarator s, each of which introduces a new constant. A
constant-declarator consists of an identifier that names the constant, followed by an “=" token, followed by
a constant-expression (§7.15) that gives the value of the constant.

The type and constant-expressionof alocal constant declaration must follow the same rules as those of a
constant member declaration (810.3).

The value of alocal constant is obtained in an expression using asimple-name (87.5.2).

The scope of alocal constant extends from its declaration to the end of the block containing the declaration.
The scope of alocal constant does not include the constant-expression that provides its value. Within the
scope of alocal constant, it is an error to declare another local variable or constant with the same name.

8.6 Expression statements

An expression-statement eval uates a given expression. The vaue computed by the expression, if any, is
discarded.

expression-statement:
statement-expression

statement-expression:

invocation-expression

obj ect-creation-expression

assignment

post-increment-expression

post-decrement-expression

pre-increment-expression

pre-decrement-expression
Not all expressions are permitted as statements. In particular, expressions such asx +y and x == 1 that
have no sde-effects, but merely compute a value (which will be discarded), are not permitted as statements.

Execution of an expression statement eval uates the contained expression and then transfers control to the
end point of the expression statement.

8.7 Selection statements
Selection statements select one d a number of possible statements for execution based on the value of a
controlling expression.

sel ection-statement:
if-statement
switch-statement

8.7.1 The if statement
The iT statement selects a statement for execution based on the vaue of a boolean expression

if-statement:
if (boolean-expression) embeddedstatement
if (boolean-expresson) embedded-statement else embedded-statement

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

boolean -expression:

expression
An else part is associated with the nearest preceding if statement that does not aready have an else part.
Thus, an i f statement of the form

if (x) if (y) FQ; else GQ;
is equivaent to
if () {

if (y) {
FO:

else {
GQO;
}
An i f statement is executed as follows:

The boolean-expression (87.16) is evaluated.

If the boolean expression yields true, control is transferred to the first embedded statement. When and

if control reaches the end point of that statement, control is transferred to the end point of the if
Statement.

If the boolean expression yields false and if an el se part is present, control is transferred to the
second embedded statement. When and if control reaches the end point of that statement, control is
transferred to the end point of the if statement.

If the boolean expression yields false and if an else part is not present, control is transferred to the
end point of the i f statement.

Thefirst embedded statement of an i f statement is reachable if the i1 ¥ statement is reachable and the
boolean expression does not have the constant value false.

The second embedded statement of an i £ statement, if present, is reachable if the i f Statement is reachable
and the boolean expression does not have the constant value true.

The end point of an i f statement is reachable if the end point of at least one of its embedded statementsis
reachable. In addition, the end point of an if statement with no else part isreachable if the i £ statement
is reachable and the boolean expression does not have the congtant value true.

8.7.2 The switch statement
The switch statement executes the statements that are associated with the value of the controlling
expression.
switch-statement:
switch (expression) switch-block
switch-block:
{ switch-sections,: }

switch-sections:
switch-section

switch-sections switch-section

switch-section:
switch-labels statement-list

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 141

C# LANGUAGE REFERENCE

142

switch-labels:
switch-label
switch-labels switch-label
switch-label:
case constant-expression
default

A switch-statement consists of the keyword swi tch, followed by a parenthesized expression (called the
switch expression), followed by a switch-block. The switch-block consists of zero or more switch-sections,
enclosed in braces. Each switch-section consists of one or more switch-label sfollowed by a statement-list
(88.2.1).

The governing type of a switch statement is established by the switch expression. If the type of the switch
expression is sbyte, byte, short, ushort, int, uint, long, ulong, char, string, Or an enum-type,
then that is the governing type of the switch statement. Otherwise, exactly one user-defined implicit
conversion (86.4) must exist from the type of the switch expression to one of the following possible
governing types: sbyte, byte, short, ushort, int,uint, long, ulong, char, string. If no such
implicit conversion exists, or if more that one such implicit conversion exists, a compile-time error occurs.

The constant expression of each case label must denote a value of atype that isimplicitly convertible
(86.1) to the governing type of the switch statement. A compile-time error occursif an two or more case
labels in the same swi tch statement specify the same constant value.

There can be a most one default label in a switch statement.
A switch statement is executed as follows:

The switch expression is evauated and converted to the governing type.

If one of the constants specified in a case labdl is equal to the value of the switch expression, control is
transferred to the statement list following the matched case labd.

If no constant matches the value of the switch expression and if adefault labd is present, control is
transferred to the statement list following thedefaul t labd.

If no constant matches the value of the switch expression and if no default labd is present, control is
transferred to the end point of the switch statement.

If the end point of the statement list of a switch section is reachable, a compile-time error occurs. Thisis
known as the “no fdl through” rule. The example

switch (i) {

case 0:
CaseZero();
break;

case 1:
CaseOne();
break;

default:
CaseOthers();
break;

isvalid because no switch section has areachable end point. Unlike C and C++, execution of a switch
section is not permitted to “fall through” to the next switch section, and the example

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

switch (i) {

case O:
CaseZero();

case 1:
CaseZeroOrOne();

default:
CaseAny(Q);

isin error. When execution of a switch section is to be followed by execution of another switch section, an
explicit goto case or goto default statement must be used:

switch (i) {
case O:
CasezZero();
goto case 1;
case 1:
CaseZeroOrOne();
goto default;

default:
CaseAny(Q);
break;

}
Multiple labels are permitted in a switch-section. Theexample

switch (i) {
case O:
CaseZero();
break;
case 1:

CaseOne();
break;
case 2:

default:
CaseTwo();
break;

}

islegal. The example does not violate the "no fall through" rule because the labels case 2: and default:
are part of the same switch-section.

The “no fal through” rule grevents a common class of bugs that occur in C and C++ when break
statements are accidentally omitted. Also, because of this rule, the switch sections of aswitch statement
can be arbitrarily rearranged without affecting the behavior of the statement. For example, the sections of
the swi tch statement above can be reversed without affecting the behavior of the statement:

switch (i) {
default:
CaseAny();
break;
case 1:

CaseZeroOrOne();

goto default;
case O:

CasezZero();
goto case 1;

¥
The statement list of a switch section typically endsin a break, goto case, or goto defaul t statement,

but any construct that renders the end point of the statement list unreachable is permitted. For example, a
whi le statement controlled by the boolean expression true is known to never reach its end point.

Likewise, a throw or return statement aways transfer control €lsewhere and never reaches its end point.
Thus, the following example is valid:

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 143

C# LANGUAGE REFERENCE

144

switch (i) {
case O:
while (true) FQ;
case 1:
throw new ArgumentException();
case 2:
return;
}

The governing type of aswitch statement may be the typestring. For example:

void DoCommand(string command) {
switch (command.ToLower()) {
case ''run":

DoRun(Q);
break;
case ''save'':

DoSave();
break;()
case "'quit':
DoQuit();
break;
default:
Inval idCommand(command) ;
break;

}

Like the string equality operators (87.9.7), the switch statement is case sensitive and will execute agiven
switch section only if the switch expression string exactly matches a case label congtant. Asillustrated by
the example above, a switch statement can be made case insensitive by converting the switch expression

string to lower case and writing al case label constants in lower case.

When the governing type of a switch statement isstring, the vauenul 1 is permitted as a case label
constant.

A switch-block may contain declaration statements (88.5). The scope of aloca variable or constant
declared in a switch block extends from the declaration to the end of the switch block.

Within a switch block, the meaning of a name used in an expression context must always be the same
(87.5.2.1.

The statement list of a given switch section is reachable if the switch statement is reachable and at least
one of the following is true:

The switch expression is a horconstant value.
The switch expression is a constant value that matches a case label in the switch section.

The switch expression is a constant value that doesn’ t match any case label, and the switch section
contains thedefaul t labdl.

A switch label of the switch section is referenced by areachable goto case or goto default
statement.

The end point of aswitch statement is reachable if at least one of the following is true:
The switch statement contains areachable break statement that exits the switch statement.

The swi tch statement is reachable, the switch expression is a non-constant value, and no defaul t
label is present.

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

The swi tch statement is reachable, the switch expression is a constant value that doesn’t match any
case labd, and no default labd is present.

8.8 Iteration statements
Iteration statements repeatedly execute an embedded statement.

iteration-statement:

while-statement
do-statement

for -statement
foreach-statement

8.8.1 The while statement
The whi Ie statement conditionally executes an embedded statement zero or more times.

while-statement:
while (boolean-expression) embedded-statement

A whi le statement is executed as follows:
The boolean-expression (87.16) is evaluated.

If the boolean expression yields true, control istransferred to the embedded statement. When and if
control reaches the end point of the embedded statement (possibly from execution of acontinue
statement), contral is transferred to the beginning of thewhi le statement.

If the boolean expression yields fal se, control is transferred to the end point of thewhi le statement.

Within the embedded statement of awhi Ie statement, abreak statement (88.9.1) may be used to transfer

control to the end point of the whi le statement (thus ending iteration of the embedded statement), and a
continue statement (8 8.9.2) may be used to transfer control to the end point of the embedded statement
(thus performing another iteration of the whi le statement).

The embedded statement of awhi le statement isreachable if thewhi le statement is reachable and the
boolean expression does not have the constant value false.

The end point of awhi le statement is reachable if at least one of the following is true:
Thewhi le statement contains a reachable break statement that exits the while statement.

Thewhi le statement is reachable and the boolean expression does not have the constant value true.

8.8.2 The do statement
The do statement conditionally executes an embedded statement one or more times.

do-statement:
do embedded-statement while (boolean-expression)

A do statement is executed as follows:
Control is transferred to the embedded statement.

When and if control reaches the end point of the embedded statement (possibly from execution of a
continue statement), the boolean-expression (87.16) is evaluated. If the boolean expresson yields
true, control is transferred to the beginning of the do statement. Otherwise, control is transferred to
the end point of the do statement.

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 145

C# LANGUAGE REFERENCE

146

Within the embedded statement of ado statement, a break statement (88.9.1) may be used to transfer
control to the end point of the do statement (thus ending iteration of the embedded statement), and a
continue statement (8 8.9.2) may be used to transfer control to the end point of the embedded statement
(thus performing another iteration of the do statement).

The embedded statement of a do statement is reachable if the do statement is reachable.
The end point of ado statement is reachable if at least one of the following is true:

The do statement contains a reachable break statement that exits the do statement.

The end point of the embedded statement is reachable and the boolean expression does not have the
constant value true.

8.8.3 The for statement

The for statement evauates a sequence of initialization expressions and then, while a condition is true,
repeatedly executes an embedded statement and eval uates a sequence of iteration expressions.

for-statement:
for (for-initializer o ; for-condition,, ; for-iterator,:) embedded-statement
for-initializer:
local-variable-declaration
statement-expression-list
for-condition:
boolean-expression
for-iterator:
statement-expression-list
statement-expression-list:
statement-expression
statement-expression-lis , statementexpression
The for-initializer, if present, consists of either alocal-variable-declaration (88.5.1) or alist of statement-
expressions (88.6) separated by commas. The scope of alocal variable declared by afor-initializer starts at

the variable-declarator for the variable and extends to the end of the embedded statement. The scope
includes the for -condition and the for-iterator.

The for-condition, if present, must be a bool ean-expression (87.16).
The for-iterator, if present, consists of alist of statement-expressions (88.6) separated by commas.
A for statement is executed as follows:

If afor-initializer is present, the variable initializers or statement expressions are executed in the order
they are written. This step is only performed once.

If afor-condition is present, it is evaluated.

If thefor-condition is not present or if the evaluation yields true, control is transferred to the embedded
statement. When and if control reaches the end point of the embedded statement (possibly from
execution of acontinue statement), the expressions of the for -iterator, if any, are evaluated in
sequence, and then another iteration is performed, starting with evaluation of the for-condition in the
step above.

If thefor-condition is present and the evaluation yields fal se, control is transferred to the end point of
the for statement.

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

Within the embedded statement of a for statement, a break statement (88.9.1) may be used to transfer
control to the end point of the for statement (thus ending iteration of the embedded statement), and a
continue statement (8 8.9.2) may be used to transfer control to the end point of the embedded statement
(thus executing another iteration of the for statement).

The embedded statement of a for statement is reachable if one of the following is true:
The for statement is reachable and no for-condition is present.

The for statement is reachable and afor-condition is present and does not have the constant value
false.

The end point of a for statement is reachable if at least one of the following is true;
The for statement contains a reachable break statement that exits the for statement.

The for statement is reachable and afor-condition is present and does not have the constant value true.

8.8.4 The foreach statement

The foreach statement enumerates the elements of a collection, executing an embedded statement for
each element of the collection.

foreach-statement:
foreach (type identifier in expression) embedded-statement

The typeand identifier of aforeach statement declare the iteration variable of the statement. The iteration
variable corresponds to a read-only local variable with a scope that extends over the embedded statement.
During execution of aforeach statement, the iteration variable represents the collection element for which
an iteration is currently being performed. A compile-time error occurs if the embedded statement attempts
to assign to the iteration variable or pass the iteration variable as a ref or out parameter.

The type of the expression of a foreach statement must be a collection type (as defined below), and an

explicit conversion (86.2) must exist from the element type of the collection to the type of the iteration
variable.

A type C issaid to be a collection type if al of the following are true:

C contains a public instance method with the signature GetEnumerator () that returns a struct-type,
class-type, or interface-type, in thefollowing called E.

E contains a publ ic instance method with the signature MoveNext () and the return type bool .

E contains a public instance property named Current that permits reading. The type of this property
issaid to be the element typeof the collection type.

The System.Array type (812.1.1) isacollection type, and since al array types derive from
System.Array, any array type expression is permitted in aforeach statement. For single-dmensional
arrays, the foreach statement enumerates the array elementsin increasing index order, starting with index
0 and ending with index Length — 1. For multi-dimensional arrays, the indices of the rightmost dimension
areincreased firdt.

A foreach statement is executed as follows;

The collection expression is evaluated to produce an instance of the collection type. Thisinstance is

referred to as c inthe following. If ¢ is of areference-type and hasthevaluenull, a
Nul IReferenceException is thrown.

An enumerator instance is obtained by evaluating the method invocation c . GetEnumerator(). The
returned enumerator is stored in atemporary local variable, in the following referred to as e. It is not

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 147

C# LANGUAGE REFERENCE

148

possible for the embedded statement to access this temporary variable. If e isof a reference-type and
hasthevaue null, aNul IReferenceException isthrown.

The enumerator is advanced to the next element by eva uating the method invocation e .MoveNext().
If the value returned by e .MoveNext() is true, the following steps are performed:

The current enumerator value is obtained by evaluating the property access e .Current, and the value
is converted to the type of theiteration variable by an explicit conversion (86.2). The resulting value is
stored in the iteration variable such that it can be accessed in the embedded statement.

Control istransferred to the embedded statement. When and if control reaches the end point of the
embedded statement (possibly from execution of acontinue statement), another foreach iteration is
performed, starting with the step above that advances the enumerator.

If the value returned by e .MoveNext() is False, control istransferred to the end point of the
foreach statement.

Within the embedded statement of a foreach statement, a break statement (88.9.1) may be used to
transfer control to the end point of the foreach statement (thus ending iteration of the embedded
statement), and a continue statement (88.9.2) may be used to transfer control to the end point of the
embedded statement (thus executing another iteration of the foreach statement).

The embedded statement of a foreach statement is reachable if the foreach statement is reachable.
Likewise, the end point of a foreach statement is reachable if the foreach statement is reachable.

8.9 Jump statements
Jump statements unconditionally transfer control.

jump-statement:
break-statement
continue-statement
goto-statement
retur n-statement
throw-statement

The location to which ajump statement transfers control is called the target of the jump statement.

When a jump statement occurs within a block, and when the target of the jump statement is outside that
block, the jump statement is said to exit the block. While ajump statement may transfer control out of a
block, it can never transfer contral into a block.

Execution of jump statements is complicated by the presence of intervening try statements. In the absence
of such try statements, a jump statement unconditionally transfers control from the jump statement to its
target. In the presence of such intervening try statements, execution is more complex. If the jump
statement exits one or more try blockswith associated final Iy blocks, contral isinitialy transferred to
the Final 1y block of the innermost try statement. When and if control reaches the end point of a

final ly block, control istransferred to the final 1y block of the next enclosing try statement. This
processis repeated until the Final 1y blocks of al intervening try statements have been executed.

In the example

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

static void FQ {
while (true) {

try {
try {
Console._WriteLine('Before break™);
break;
1
finally {
Console._WriteLine("Innermost finally block');
}
3
Ffinally {

Console.WriteLine(""Outermost finally block™);

) }
Console.WriteLine(""After break™);
}

the finally blocks associated with two try statements are executed before control is transferred to the target
of the jump statement.

8.9.1 The break statement
The break statement exits the nearest enclosing switch, while, do, for, or foreach statement.

break-statement:
break ;

The target of abreak statement isthe end point of the nearest enclosing switch,while, do, for, or
foreach statement. If a break statement is not enclosed by a switch, while, do, for, or foreach
statement, a compile-time error occurs.

When multiple switch, while, do, for, or foreach statements are nested within each other, abreak
statement applies only to the innermost statement. To transfer control across multiple nesting levels, agoto
statement (88.9.3) must be used.

A break statement cannot exit a final Iy block (88.10). When a break statement occurs within a
final ly block, the target of the break statement must be within the same Final 1y block, or otherwise a
compile-time error occurs.

A break statement is executed as follows:

If the break statement exits one or more try blocks with associated final 1y blocks, control is
initially transferred to the final 1y block of the innermogt try statement. When and if control reaches
the end point of afinal ly block, control is transferred to the Final 1y block of the next enclosing
try statement. This processis repeated until the final 1y blocks of al intervening try statements
have been executed.

Control istransferred to the target of the break statement.

Because a break statement unconditionally transfers control elsewhere, the end point of abreak statement
is never reachable.

8.9.2 The continue statement

The continue statement starts anew iteration of the nearest enclosing while, do, for, or foreach
statement.

continue-statement:
continue ;

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 149

C# LANGUAGE REFERENCE

150

The target of a continue statement is the end point of the embedded statement of the nearest enclosing
while, do, for, or foreach statement. If a continue statement is not enclosed by awhile, do, for, or
foreach statement, a compile-time error occurs.

When multiplewhi le, do, for, or foreach statements are nested within each other, a continue
statement applies only to the innermost statement. To transfer control across multiple nesting levels, agoto

statement (88.9.3) must be used.

A continue statement cannot exit a final ly block (88.10). When acontinue satement occurs within a
finally block, the target of the continue statement must be within the same final 1y block, or
otherwise a compile-time error occurs.

A continue statement is executed as follows:

If the continue statement exits one or more try blocks with associated final Iy blocks, control is
initially transferred to the Final 1y block of the innermost try statement. When and if control reaches
the end point of afinal ly block, control is transferred to the Final Iy block of the next enclosing
try statement. This processis repeated until the Final 1y blocks of al intervening try statements
have been executed.

Controal istransferred to the target of the continue statement.

Because acontinue statement unconditionally transfers control elsewhere, the end point of acontinue
statement is never reachable.

8.9.3 The goto statement
The goto statement transfers control to a statement that is marked by alabel.

goto-statement:
goto identifier ;
goto case constantexpression ;
goto default ;

Thetarget of a goto identifier statement is the labeled statement with the given labdl. If alabd with the
given name does not exist in the current function member, or if the goto statement is not within the scope
of the label, a compile-time error occurs.

The target of agoto case statement is the statement list of the switch section in the nearest enclosing
switch statement that contains a case label with the given constant vaue. If thegoto case statement is
not enclosed by a switch statement, if the constant-expression is not implicitly convertible (86.1) to the
governing type of the nearest enclosing switch statement, or if the nearest enclosing switch statement
does not contain a case labdl with the given constant value, a compile-time error occurs.

The target of agoto defaul t statement is the statement list of the switch section in the nearest enclosing
switch statement (88.7.2) that containsadefaul t labdl. If the goto defaul t statement is not enclosed
by aswitch statement, or if the nearest enclosing swi tch statement does not contain a default labd, a
compile-time error occurs.

A goto statement cannot exit a Final 1y block (§8.10). When agoto statement occurs withinafinal ly
block, the target of the goto statement must be within the same Final 1y block, or otherwise a compile-
time error occurs.

A goto statement is executed as follows:

If the goto statement exits one or more try blockswith associated final Iy blocks, control isinitidly
transferred to the Final Iy block of the innermost try statement. When and if control reaches the end
point of a Final ly block, control is transferred to the Final 1y block of the next enclosing try

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

statement. This process is repeated until the fFinal 1y blocks of al intervening try statements have
been executed.

Control istransferred to the target of the goto statement.

Because agoto statement unconditionally transfers control elsewhere, the end point of agoto statement is
never reachable.

8.9.4 The return statement

The return statement returns control to the caller of the function member in which the return statement
appears.

retur n-statement:

return expressiong ;
A return statement with no expression can be used only in a function member that does not compute a
value, that is, a method with the return typevoid, the set accessor of a property or indexer, a constructor,
or adestructor.

A return statement with an expression can only be used only in afunction member that computes a value,
that is, amethod with a non-void return type, theget accessor of a property or indexer, or a user-defined
operator. An implicit conversion (86.1) must exist from the type of the expression to the return type of the
containing function member.

Itisan error for a return statement to appear in afinal 1y block (88.10).
A return statement is executed as follows:

If the return statement specifies an expression, the expression is evauated and the resulting value is
converted to the return type of the containing function member by an implicit conversion. The result of
the conversion becomes the value returned to the caller.

If the return statement is enclosed by one or more try blocks with associated final 1y blocks,
control isinitialy transferred to the final 1y block of the innermogt try statement. When and if
control reaches the end point of a final Iy block, control is transferred to the Final Iy block of the
next enclosing try statement. This process is repeated until the Final 1y blocks of dl enclosing try
statements have been executed.

Control is returned to the caller of the containing function member.

Because areturn statement unconditionally transfers control elsewhere, the end point of areturn
statement is never reachable.

8.9.5 The throw statement
The throw statement throws an exception.
throwstatement:

throw expression gy

A throw statement with an expression throws the exception produced by evauating the expression. The
expression must denote a value of the class type System.Exception or of aclasstype that derivesfrom
System.Exception. If evaluation of the expression produces nul I, aNul IReferenceException is
thrown instead.

A throw statement with no expression can be used only in a catch block. It re-throws the exception that is
currently being handled by the catch block.

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 151

C# LANGUAGE REFERENCE

152

Because a throw statement unconditionally transfers control elsewhere, the end point of a throw statement
is never reachable.

When an exception is thrown, control is transferred to the first catch clause in a try statement that can

handle the exception. The process that takes place from the point of the exception being thrown to the point
of transferring control to a suitable exception handler is known as exception propagation. Propagation of an

exception consists of repeatedly evaluating the following steps until a catch clause that matches the
exception is found. In the descriptions, the throw pointisinitially the location at which the exception is
thrown.

In the current function member, each try statement that encloses the throw point is examined. For each
statement S, starting with the innermost try statement and ending with the outermost try statement,
the following steps are evaluated:

If the try block of S encloses the throw point and if S has one or more catch clauses, the catch
clauses are examined in order of appearance to locate a suitable handler for the exception. The first
catch clause that specifies the exception type or a base type of the exception typeis consdered a
match. A general catch clauseis considered a match for any exception type. If amatching catch
clause is located, the exception propagation is completed by transferring control to the block of that
catch clause.

Otherwise, if the try block or acatch block of S encloses the throw point and if S hasa Finally

block, control is transferred to the Final 1y block. If the Final Iy block throws another exception,
processing of the current exception is terminated. Otherwise, when control reaches the end point of the

finally block, processing of the current exception is continued.

If an exception handler was not located in the current function member invocation, the function member
invocation is terminated. The steps above are then repested for the caller of the function member with a
throw point corresponding to the statement from which the function member was invoked.

If the exception processing ends up terminating all function member invocations in the current thread or

process, indicating that the thread or process has no handler for the exception, then the tread or process
isitself terminated in an implementation defined fashion.

8.10 The try statement

The try statement provides a mechanism for catching exceptions that occur during execution of a block.
The try statement furthermore provides the ability to specify ablock of code that is aways executed when
control leaves the try statement.

try-statement:
try block catch-clauses
try block finally-clause
try block catch-clauses finally-clause

catch-clauses:
specific-catch-clauses general-catch-clause,y,
specific-catch-clauses,, general-catch-clause

specific-catch-clauses:

specific-catch-clause

specific-catch-clauses specific-catch-clause
specific-catch-clause:

catch (classtype identifiersy) block

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

general-catch-clause:
catch block

finally-clause:
finally block

There are three possible forms of try statements:
A try block followed by one or more catch blocks.
A try block followed by a final 1y block.
A try block followed by one or more catch blocks followed by afinal 1y block.

When a catch clause specifies a class-type the type must be System.Exception or atype that derives
from System.Exception.

When a catch clause specifies both aclass-typeand an identifier, an exception variable of the given name
and type is declared. The exception variable corresponds to a read-only local variable with a scope that
extends over the catch block. During execution of the catch block, the exception variable represents the

exception currently being handled. A compile-time error occurs if a catch block attempts to assign to the
exception variable or pass the exception variable as a ref or out parameter.

Unless a catch clause includes an exception variable name, it isimpossible to access the exception object
in thecatch block.

A catch clause that specifies neither an exception type nor an exception variable nameis called a generd
catch clause. A try statement can only have one general catch clause, and if oneis present it must be
thelast catch clause. A general catch clause of the form

catch {...}
is precisely equivaent to
catch (System.Exception) {...}

An error occurs if a catch clause specifies atype that is equal to or derived from atype that was specified
inan earlier catch clause. Because catch clauses are examined in order of appearance to locate a handler
for an exception, without this restriction it would be possible to write unreachable catch clauses.

Itisan error for a try statement to contain agenera catch clause if the try statement also contains a
catch clause for the System.Exception type.

Within a catch block, a throw statement (88.9.5 with no expression can be used to rethrow the
exception that is currently being handled by the catch block.

Itisan error for a break, continue, or goto statement to transfer control out of a final 1y block. When
abreak, continue, or goto statement occursin a final ly block, the target of the statement must be
within the same Final Iy block, or otherwise a compile-time error occurs.

Itisan error for a return statement to occur in a Final 1y block.
A try statement is executed as follows:

Control istransferred to the try block.

When and if control reaches the end point of the try block:

If the try statement hasa Final ly block, the Final ly block is executed.
Control istransferred to the end point of the try statement.

If an exception is propagated to the try statement during execution of the try block:

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 153

C# LANGUAGE REFERENCE

The catch clauses, if any, are examined in order of appearance to locate a suitable handler for the
exception. Thefirst catch clause that specifies the exception type or a base type of the exception type
is considered amatch. A general catch clause is considered a match for any exception type. If a
matching catch clause islocated:

If the matching catch clause declares an exception variable, the exception object is assigned to the
exception variable.

Contral istransferred to the matching catch block.

When and if control reaches the end point of the catch block:
If the try statement hasafinal ly block, the fFinal 1y block is executed.
Control istransferred to the end point of the try statement.

If an exception is propagated to the try statement during execution of the catch block:
If the try statement hasafinal ly block, the fFinal ly block is executed.
The exception is propagated to the next enclosing try statement.

If the try statement hasno catch clauses or if no catch clause matches the exception:
If the try statement hasa Final 1y block, the final 1y block is executed.
The exception is propagated to the next enclosing try statement.

The statements of a final 1y block are aways executed when control leaves a try statement. Thisistrue
whether the control transfer occurs as a result of normal execution, as a result of executing abreak,
continue, goto, Or return statement, or as aresult of propagating an exception out of the try statement.

If an exception is thrown during execution of a Final ly block, the exception is propagated to the next
enclosing try statement. If another exception was in the process of being propagated, that exception is logt.

The process of propagating an exception is further discussed in the description of the throw statement
(88.9.5).

The try block of a try statement is reachable if the try statement is reachable.

A catch block of atry statement is reachable if the try statement is reachable.

The finally block of atry statement is reachable if the try statement is reachable.

The end point of a try statement is reachable both of the following are true:
The end point of the try block is reachable or the end point of at least one catch block is reachable.
If afinally block is present, the end point of the final Iy block isreachable.

8.11 The checked and unchecked statements

The checked and unchecked statements are used to control the overflow checking context for integrak
type arithmetic operations and conversions.

checked-statement:
checked block

unchecked-statement:
unchecked block

The checked statement causes all expressions in the block to be evaluated in a checked context, and the
unchecked statement causes all expressionsin the block to be evaluated in an unchecked context.

154 Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

The checked and unchecked statements are precisely equivaent to the checked and unchecked
operators (87.5.13), except that they operate on blocks instead of expressions.

8.12 The lock statement

The 1ock statement obtains the mutual-exclusion lock for a given object, executes a statement, and then
releases the lock.

lock-statement:
lock (expresson) embedded-statement

The expression of a lock statement must denote avalue of a reference-type. Animplicit boxing conversion
(86.1.5) is never performed for the expression of a lock statement, and thusit is an error for the expression
to denote a value of avalue-type.

A lock statement of the form

lock (X) ...

where x is an expression of areference-type, is precisay equivaent to
System.CriticalSection.Enter(x);

try {

bs

finally {
System.CriticalSection.Exit(X);

}

except that x is only evaluated once. The exact behavior of the Enter and Exit methods of the
System.CriticalSection classisimplementation defined.

The System. Type object of a class can conveniently be used as the mutual-exclusion lock for static
methods of the class. For example:

class Cache

public static void Add(object x) {
lock (typeof(Cache)) {

}
}

public static void Remove(object x) {
lock (typeof(Cache)) {

}
}
}

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 155

Chapter

9. Namespaces

C# prograrrs are organized using namespaces. Namespaces are used both as an “interna” organization
system for a program, and as an “externa” organization system — away of presenting program elements
that are exposed to other programs.

Using directives are provided to facilitate the use of namespaces.

9.1 Compilation units
A compilation-unit defines the overall structure of asource file. A compilation unit consists of zero or more
using-directives followed by zero or more namespace-member-declarations.
compilation-unit:
using-directives,,, namespace-member-declarationSoy

A C# program consists of one or more compilation units, each contained in a separate source file. When a
C# program is compiled, all of the compilation units are processed together. Thus, compilation units can
depend on each other, possibly in a circular fashion.

The using-directives of a compilation unit affect the namespace-member -declarationsof that compilation
unit, but have no effect on other compilation units.

The namespace-member-declarations of each compilation unit of a program contribute membersto asingle
declaration space called the global namespace. For example:

FileA.cs:
class A {}
FileB.cs:
class B {}

The two compilation units contribute to the single global namespace, in this case declaring two classes with
the fully qualified names A and B. Because the two compilation units contribute to the same declaration
space, it would have been an error if each contained a declaration of a member with the same name.

9.2 Namespace declarations

A namespace-declaration consists of the keyword namespace, followed by a namespace name and body,
optionally followed by a semicolon.

namespace-declaration:
namespace qualifiedidentifier namespace-body ;o
qualified-identifier:
identifier
qualified-identifier . identifier
namespace-body:
{ using-directives,,, namespace-member-declarations,, 3}
A namespace-declaration may occur as atop-level declaration in a compilation-unit or as a member
declaration within another namespace-declaration. When a namespace-declaration occurs as atop-level

declaration in a compilation-unit, the namespace becomes a member of the global namespace. When a
namespace-declaration occurs within another namespace-declaration, the inner namespace becomes a

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 157

C# LANGUAGE REFERENCE

158

member of the outer namespace. In either case, the name of a namespace must be unique within the
containing hamespace.

Namespaces are implicitly public and the declaration of a namespace cannot include any access modifiers.

Within a namespace-body, the optiond using-directives import the names of other namespaces and types,
allowing them to be referenced directly instead of through qualified names. The optiona namespace-
member-declar ations contribute members to the declaration space of the namespace. Note that all using-
directives must appear before any member declarations.

The qualified-identifier of a namespace-declaration may be single identifier or a sequence of identifiers
separated by “.” tokens. The latter form permits a program to define a nested namespace without lexicaly
nesting several namespace declarations. For example,

namespace N1._.N2

class A {}
class B {}

is semantically equivalent to

namespace N1
namespace N2

class A {}
class B {}

}

Namespaces are opentended, and two namespace declarations with the same fully qualified name
contribute to the same declaration space (§3.1). In the example

namespace N1._.N2

class A {}

namespace N1._.N2

class B {}

the two namespace declarations above contribute to the same declaration space, in this case declaring two
classes with the fully qualified namesN1.N2.A and N1.N2.B. Because the two declarations contribute to

the same declaration space, it would have been an error if each contained a declaration of a member with
the same name.

9.3 Using directives

Using directives facilitate the use of namespaces and types defined in other namespaces. Using directives
impact the name resol ution process of namespace-or -type-names (83.6) and smple-names (87.5.2), but
unlike declarations, using directives do not contribute new members to the underlying declaration spaces of
the compilation units or namespaces within which they are used.

using-directives:
using-directive
using-directives usingdirective

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

using-directive:
using-alias-directive
using-namespace-directive
A using-alias-directive (§9.3.1) introduces an alias for a namespace or type.
A using-namespace-directive (89.3.2) imports the type members of a namespace.

The scope of ausing-directiveextends over the namespace-member-declarationsof itsimmediately
containing compilation unit or namespace body. The scope of ausing-directive specifically does not
include its peer using-directives. Thus, peerusing-directives do not affect each other, and the order in
which they are written isinsignificant.

9.3.1 Using alias directives
A using-alias-directive introduces an identifier that serves as an alias for a namespace or type within the
immediately enclosing compilation unit or namespace body.
using-alias-directive:
using identifier = namespace-or-type-name
Within member declarations in a compilation unit or namespace body that contains a using-alias-directive,

the identifier introduced by the using-alias-directive can be used to reference the given namespace or type.
For example:

namespace N1._.N2

class A {}

namespace N3

{
using A = N1.N2.A;

class B: A {}

Here, within member declarations in the N3 namespace, A isan diasfor N1.N2.A, and thus classN3.B
derives from classN1.N2.A. The same effect can be obtained by creating an alias R for N1.N2 and then

referencing R.A:

namespace N3

{
using R = N1.N2;

class B: R.A {3
}

The identifier of ausing-alias-directive must be unique within the declaration space of the compilation unit
or namespace that immediately contains the using-alias-directive. For example:

namespace N3

class A {}

namespace N3

using A = N1.N2._A; // Error, A already exists
}
Here, N3 already contains a member A, so it isan error for ausing-alias-directive to use that identifier. Itis
likewise an error for two or more using-alias-directives in the same compilation unit or namespace body to
declare diases by the same name.

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 159

C# LANGUAGE REFERENCE

A using-alias-directive makes an dias available within a particular compilation unit or namespace body,

but it does not contribute any new members to the underlying declaration space. In other words, ausing-
aliasdirectiveis not trangitive but rather affects only the compilation unit or namespace body in which it
occurs. In the example

namespace N3

using R = N1.N2;
}

namespace N3

class B: R.A {} // Error, R unknown
}
the scope of the using-alias-directivethat introduces R only extends to member declarationsin the
namespace body in which it is contained, and R is thus unknown in the second namespace declaration.
However, placing the using-alias-directive in the containing compilation unit causes the alias to become
available within both namespace declarations:

using R = N1.N2;
namespace N3

class B: R.A {}
}

namespace N3

{
class C: R.A {}

Just like regular members, names introduced by using-alias-directives are hidden by similarly named
membersin nested scopes. In the example

using R = N1.N2;

namespace N3

class R {}

class B: R.A {} // Error, R has no member A
}

the reference to R . A in the declaration of B causes an error because R refersto N3.F, not N1 .N2.

The order in which using-alias-directives are written has no significance, and resolution of the namespace-
or -type-name referenced by ausing-alias-directive is neither affected by theusing-aliasdirective itself nor
by other using-directivesin the immediately containing compilation unit or namespace body. In other
words, the namespace-or -type-name of ausing-alias-directive is resolved asif the immediately containing
compilation unit or namespace body had no using-directives. In the example

namespace N1.N2 {}
namespace N3
using R1 N1; // OK

using R2 = N1.N2; // OK
using R3 = R1.N2; // Error, R1 unknown

}
the last usng-alias-directive isin error because it is not affected by the first using-alias-directive.

160 Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

A using-alias-directive can create an alias for any namespace or type, including the namespace within
which it appears and any namespace or type nested within that namespace.

Accessing a namespace or type through an alias yields exactly the same result as accessing the namespace
or type through its declared name. In other words, given

namespace N1._.N2

class A {}

namespace N3

using R1 = N1;

using R2 = N1.N2;

class B
N1_.N2_.A a; // refers to N1_.N2_.A
R1.N2.A b; // refers to N1.N2.A
R2.A c; // refers to N1.N2_.A

b

}

the namesN1.N2.A, R1.N2.A, and R2.A are completely equivalent and al refer to the class whose fully
quaified nameis N1 .N2_A.

9.3.2 Using namespace directives

A using-namespace-directive imports the types contained in a namespace into the immediately enclosing
compilation unit or namespace body, enabling the identifier of each type to be used without qualification.

using-namespace-directive:

using namespace-name ;
Within member declarations in compilation unit or namespace body that contains a using-namespace-
directive, the types contained in the given namespace can be referenced directly. For example:

namespace N1.N2

class A {}

namespace N3

using N1.N2;
class B: A {}

Here, within member declarations in the N3 namespace, the type members of N1.N2 are directly available,
and thus classN3.B derivesfrom class N1_N2_A.

A using-namespace-directive imports the types contained in the given namespace, but specifically does not
import nested namespaces. In the example

namespace N1.N2

class A {}

namespace N3

{
using N1;

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 161

C# LANGUAGE REFERENCE

162

class B: N2.A {} // Error, N2 unknown
}

the using-namespace-dir ective importsthe types contained in N1, but not the namespaces nested in N1.
Thus, the reference to N2 . Ain the declaration of B isin error because no members named N2 are in scope.

Unlike a using-alias-directive, ausing-namespace-directive may import types whose identifiers are already
defined within the enclosing compilation unit or namespace body. In effect, names imported by a using-
namespace-directive are hidden by similarly named members in the enclosing compilation unit or
namespace body. For example:

namespace N1.N2

class A {}
class B {}

namespace N3

using N1.N2;
class A {}

Here, within member declarations in the N3 namespace, A refersto N3.A rather than N1.N2.A.

When more than one namespace imported by using-namespace-directivesin the same compilation unit or
namespace body contain types by the same name, references to that name are considered ambiguous. In the
example

namespace N1

class A {}

namespace N2

class A {}

namespace N3

using N1;
using N2;
class B: A {} // Error, A is ambiguous

}

both N1 and N2 contain a member A, and because N3 imports both, referencing A in N3 is an error. In this
situation, the conflict can be resolved either through qualification of referencesto A, or by introducing a
using-alias-directive that picks a particular A. For example:

namespace N3

using N1;

using N2;

using A = N1.A;

class B: A {} // A means N1.A
}
Like a using-alias-directive, ausing-namespace-directive does not contribute any new members to the
underlying declaration space of the compilation unit or namespace, but rather affects only the compilation
unit or namespace body in which it appears.

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

The namespace-name referenced by ausing-namespace-directive is resolved in the same way as the
namespace-or -type-name referenced by ausing-alias-directive. Thus, using-namespace-directivesin the
same compilation unit or namespace body do not affect each other and can be written in any order.

9.4 Namespace members
A namespace-member-declaration is either anamespace-declaration (89.2) or atype-declaration (89.5).

namespace-member -declarations:
namespace-member -declaration
namespace-member -declarations namespace-member-declaration

namespace-member -declaration:
namespace-declaration
type-declaration

A compilation unit or a namespace body can contain namespace-member-declarations, and such
declarations contribute new members to the underlying declaration space of the containing compilation unit
or namespace body.

9.5 Type declarations

A type-declaration is either aclass-declaration (§810.1), a struct-declaration (§11.1), an interface-
declaration(813.1), an enum-declaration (814.1), or adelegate-declaration (§15.1).

type-declaration:
class-declaration
struct-declaration
interface-declaration
enum-declaration
delegate-declaration

A type-declaration can occur as atop-level declaration in a compilation unit or as amember declaration
within a namespace, class, or struct.

When atype declaration for atype T occurs as atop-level declaration in a compilation unit, the fully
qualified name of the newly declared type is smply T. When atype declaration for atype T occurs within a
namespace, class, or struct, the fully qualified name of the newly declared typeisN. T, where N isthe fully
gualified name of the containing namespace, class, or struct.

A type declared within a class or struct is called a nested type (§10.2.6).

The permitted access modifiers and the default access for a type declaration depend on the context in which
the declaration takes place (8 3.3.1):

Types declared in compilation unitsor namespaces can have public or internal access. The default
isinternal access.

Types declared in classes can havepublic, protected internal, protected, internal, or
private access. The default isprivate access.

Types declared in structs can have public, internal, or private access. The default isprivate
access.

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 163

Chapter

10. Classes

A classis adata structure that contains data members (constants, fields, and events), function members
(methods, properties, indexers, operators, constructors, and destructors), and nested types. Class types
support inheritance, a mechanism whereby derived classes can extend and specialize base classes.

10.1 Class declarations
A class-declaration isa type-declaration (89.5) that declares a new class.

class-declaration:

attributes,; classmodifiers,, class identifier class-base,,: classbody ;qp
A class-declaration consists of an optional set of attributes (817), followed by an optional set of class-
modifiers (810.1.1), followed by the keyword class and an identifier that names the class, followed by an

optiona class-base specification (810.1.2), followed by a class-body (810.1.3), optionally followed by a
semicolon.

10.1.1 Class modifiers
A class-declaration may optionaly include a sequence of class modifiers:

class-modifiers:
class-modifier
class-modifiers class-modifier

class-modifier:
new
public
protected
internal
private
abstract
sealed

It isan error for the same modifier to appear multiple times in a class declaration.

The new modifier is only permitted on nested classes. It specifies that the class hides an inherited member
by the same name, as described in §10.2.2

The public, protected, internal, and private maodifiers control the accessibility of the class.
Depending on the context in which the class declaration occurs, some of these modifiers may not be
permitted (83.3.1).

The abstract and sealed modifiers are discussed in the following sections.

10.1.1.1 Abstract classes

The abstract modifier isused to indicate that a class isincomplete and intended only to be a base class of
other classes. An abstract class differs from anonabstract classis the following ways:

An abstract class cannot be instantiated, and it is an error to use thenew operator on an abstract class.
Whileit is possible to have variables and val ues whose compile-time types are abstract, such variables

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 165

C# LANGUAGE REFERENCE

166

and vaues will necessarily either be nulll or contain references to instances of non-abstract classes
derived from the abstract types.

An abstract class is permitted (but not required) to contain abstract methods and accessors.
An abstract class cannot be sealed.

When a nontabstract classis derived from an abstract class, the non-abstract class must include actual
implementations of all inherited abstract methods and accessors. Such implementations are provided by
overriding the abstract methods and accessors. In the example

abstract class A

public abstract void FQ);

abstract class B: A

public void GQ {}

class C: B

public override void FQO {
// actual implementation of F

b
¥
the abstract class A introduces an abstract method F. Class B introduces an additional method G, but doesn’t

provide an implementation of F. B must therefore also be declared abstract. Class C overrides F and
provides an actua implementation. Since there are no outstanding abstract methods or accessorsin C, C is

permitted (but not required) to be non-abstract.

10.1.1.2 Sealed classes

The sealed modifier is used to prevent derivation from a class. An error occursif aseded classis
specified as the base class of another class.

A sedled class cannot also be an abstract class.

The sealed modifier is primarily used to prevent unintended derivation, but it also enables certain run-
time optimizations. In particular, because a sealed classis known to never have any derived classes, it is

possible to transform virtua function member invocations on sealed class instances into non-virtua
invocations.

10.1.2 Class base specification

A class declaration may include a class-base specification which defines the direct base class of the class
and the interfaces implemented by the class.

class-base:
class-type
interface-typelist
dass-type , interface-type-list

interface-type-list:
interface-type
interface-type-list , interfacetype

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

10.1.2.1 Base classes

When aclass-type isincluded in the class-base, it specifies the direct base class of the dass being declared.
If aclassdeclaration hasno classhase, or if the class-base lists only interface types, the direct base classis
assumed to be object. A class inherits members from its direct base class, as described in §10.2.1

In the example
class A {}

class B: A {}

classA is said to be the direct base class of B, and B is said to be derived from A. Since A does not explicitly
specify adirect base class, its direct base classisimplicitly object.

The direct base class of a classtype must be at |east as accessible as the class type itsalf (83.3.4). For
example, it isan error for apublic classto derive from aprivate or internal class.

The base classes of aclass are the direct base class and its base classes. In other words, the set of base

classesis the trangitive closure of the direct base class relationship. Referring to the example above, the
base classes of Bare Aand object.

Except for classobject, every class has exactly one drect base class. The object class has no direct base
class and is the ultimate base class of all other classes.

When aclassB derivesfrom aclass A, it isan error for A to depend on B. A classdirectly dependson its
direct base class (if any) and directly depends on the class within which it isimmediately nested (if any).
Given this definition, the complete set of classes upon which a class depends is the transitive closure of the
directly depends on relationship.

The example

class A: B {}

class B: C {}

class C: A {}

isin error because the classes circularly depend on themselves. Likewise, the example
class A: B.C {}

class B: A

public class C {}

isin error because A dependson B.. C (its direct base class), which depends on B (its immediately enclosing
class), which circularly depends on A.

Note that a class does not depend on the classes that are nested within it. In the example

class A

class B: A {}
B depends on A (because A is both its direct base class and its immediately enclosing class), but A does not
depend on B (since B is neither a base class nor an enclosing class of A). Thus, the exampleisvalid.
Itis not possible to derive from a sealed class. In the example

sealed class A {}
class B: A {} // Error, cannot derive from a sealed class

classB isin error because it attempts to derive from the sealed class A.

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 167

C# LANGUAGE REFERENCE

168

10.1.2.2 Interface implementations

A class-base specification may include alist of interface types, in which case the class is said to implement
the given interface types. Interface implementations are discussed further in §13.4.

10.1.3 Class body
The class-body of a class defines the members of the class.

class-body:
{ dass-member-declarations,,; }

10.2 Class members

The members of aclass consist of the members introduced by its class-member -declarations and the
members inherited from the direct base class.

class-member -declarations:
class-member -declaration
class-member -declarations classmember -declaration

class-member -declaration:
constant-declaration
field-declaration
method-declaration
property-declaration
event-declaration
indexer-declaration
operator -declaration
constructor-declaration
destructor -declaration
static-constructor-declaration
type-declaration

The members of a class are divided into the following categories:
Constants, which represent constant val ues associated with the class (§10.3).
Fields, which are the variables of the class (§10.4).
Methods, which implement the computations and actions that can be performed by the class (§10.5).

Properties, which define named attributes and the actions associated with reading and writing those
attributes (810.6).

Events, which define notificaiions that are generated by the class (810.7).

Indexers, which permit instances of the class to be indexed in the same way as arrays (§10.8).
Operators, which define the expression operators that canbe applied to instances of the class (§10.9).
Instance constructors, which implement the actions required to initiglize instances of the class (§ 10.10)

Destructors, which implement the actions to perform before instances of the class are permanently
discarded (810.11).

Static congtructors, which implement the actions required to initidize the class itsef (810.12).
Types, which represent the typesthat are loca to the class (§9.5).

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

Members that contain executable code are collectively known as the function members of the class. The
function members of a class are the methods, properties, indexers, operators, constructors, and destructors
of the class.

A classdeclaration creates a new declaration space (83.1), and the class-member -declarationsimmediately
contained by the class-declaration introduce new members into this declaration space. The following rules

apply to class-member-declarations:

Constructors and destructors must have the same name as the immediately enclosing class. All other
members must have names that differ from the name of the immediately enclosing class.

The name of aconstant, field, property, event, or type must differ from the names of all other members
declared in the same class.

The name of a method must differ from the names of all other non-methods declared in the same class.

In addition, the signature (83.4) of a method must differ from the signatures of all other methods
declared in the same class.

The signature of an indexer must differ from the signatures of al other indexers declared in the same
class.

The signature of an operator must differ from the signatures of all other operators declared in the same
class.

The inherited members of a class (§10.2.1) are specifically not part of the declaration space of aclass. Thus,
aderived classis allowed to declare a member with the same name or signature as an inherited member
(which in effect hides the inherited member).

10.2.1 Inheritance

A class inherits the members of its direct base class. Inheritance means that a class implicitly contains all
members of its direct base class, except for the constructors and destructors of the base class. Some
important aspects of inheritance are:

Inheritance is transitive. If C isderived from B, and B isderived from A, then C inherits the members
declared in B as well asthe members declared in A.

A derived class extends its direct base class. A derived class can add new members to those it inherits,
but it cannot remove the definition of an inherited member.

Constructors and destructors are not inherited, but al other members are, regardliess of their declared
accessibility (83.3. However, depending on their declared accessibility, inherited members may not be
accessible in a derived class.

A derived class can hide (83.5.1.2) inherited members by declaring new members with the same name
or signature. Note however that hiding an inherited member does not remove the member—it merely
makes the member inaccessible in the derived class.

Aninstance of a class contains a copy of al instance fields declared in the class and its base classes, and
an implicit conversion (§6.1.4) exists from a derived class type to any of its base class types. Thus, a
reference to a derived class instance can be treated as a reference to a base class instance.

A class can declare virtual methods, properties, and indexers, and derived classes can override the
implementation of these function members. This enables classes to exhibit polymorphic behavior
wherein the actions performed by a function member invocation varies depending on the run-time type
of the instance through which the function member is invoked.

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 169

C# LANGUAGE REFERENCE

170

10.2.2 The new modifier

A classmember-declaration is permitted to declare a member with the same name or signature as an
inherited member. When this occurs, the derived class member is said to hide the base class member.
Hiding an inherited member is not considered an error, but it does cause the compiler to issue awarning.
To suppress the warning, the declaration of the derived class member can include a new modifier to
indicate that the derived member is intended to hide the base member. Thistopic is discussed further in
83512

If anew modifier isincluded in a declaration that doesn’t hide an inherited member, awarning is issued to
that effect. Thiswarning is suppressed by removing the new modifier.

It isan error to use the new and override modifiersin the same declaration.

10.2.3 Access modifiers

A classmember-declaration can have any one of the five possible types of declared accessibility (83.3.1):

public, protected internal, protected, internal, or private. Except for the protected
internal combination, it is an error to specify more than one access modifier. When a class-member-

declarationdoes not include any access modifiers, the declaration defaultsto private declared
accessihility.

10.2.4 Constituenttypes

Types that are referenced in the declaration of a member are called the congtituent types of the member.
Possible constituent types are the type of a constant, field, property, event, or indexer, the return type of a
method or operator, and the parameter types of a method, indexer, operator, or constructor.

The congtituent types of a member must be at least as accessible as the member itself (83.3.4).

10.2.5 Static and instance members

Members of aclass are either static members or instance members. Generally speaking, it is useful to think
of static members as belonging to classes and instance members as belonging to objects (instances of
classes).

When afidld, method, property, event, operator, or constructor declaration includes a static modifier, it
declares a static member. In addition, a constant or type declaration implicitly declares a static member.
Static members have the following characteristics:

When a static member is referenced in amember-access (87.5.4) of the form E .M, E must denote a type.
Itisan error for E to denote an instance.

A datic field identifies exactly one storage location. No matter how many instances of aclass are
created, there is only ever one copy of a static field.

A static function member (method, property, indexer, operator, or constructor) does not operate on a
specific instance, and it isan error to refer to this in a static function member.

When a field, method, property, event, indexer, constructor, or destructor declaration does not include a
static modifier, it declares an instance member. An instance member is sometimes called a non-static
member. Instance members have the following characterigtics:

When an instance member is referenced in a member -access (87.5.4) of the form E_M, E must denote an
instance. It is an error for E to denote atype.

Every ingtance of a class contains a separate copy of al ingtance fields of the class.

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

An instance function member (method, property accessor, indexer accessor, constructor, or destructor)
operates on a given instance of the class, and this instance can be accessed as this (87.5.7).

The following example illustrates the rules for accessing static and instance members:

class Test

{
int x;
static int y;
void FQ {
X = 1; // Ok, same as this.x =1
3 y = 1; // Ok, same as Test.y = 1
static void GO {
X = 1; // Error, cannot access this.x
y = 1; // Ok, same as Test.y =1
}
static void Main() {
Test t = new Test();
t.x = 1; // Ok
ty = 1; // Error, cannot access static member through instance
Test.x = 1; // Error, cannot access instance member through type
Test.y = 1; // Ok
}
}

The F method shows that in an instance function member, asimple-name (87.5.2) can be used to access
both instance members and static members. The G method shows that in a static function member, itisan
error to access an instance member through a simple-name. The Main method shows that in a member-
access (87.5.4), ingtance members must be accessed through instances, and static members must be
accessed through types.

10.2.6 Nested types

10.3 Constants

Constants are members that represent constant values. A constant-declaration introduces one or more
constants of a given type.

constant-declaration:
attributes,, constant-modifiers,, const type constantdeclarators ;

constant-modifiers:

constant-modifier
constant-modifiers constantmodifier

constant-modifier:
new
public
protected
internal
private

constant-declarators:

constant-declarator
constant-dedarators , constantdeclarator

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 171

C# LANGUAGE REFERENCE

172

constant-declarator:

identifier = constant-expression
A constant-declaration may include set of attributes (817), a new modifier (§810.2.2), and avalid
combination of the four access modifiers (810.2.3). The attributes and modifiers apply to al of the
members declared by the constant-declaration. Even though constants are considered static members, a
constant-declaration neither requires nor allows a static modifier.

The type of aconstant-declaration specifies the type of the members introduced by the declaration. The
typeisfollowed by alist of constant-declarators, each of which introduces anew member. A constant-
declarator consists of an identifier that names the member, followed by an “=" token, followed by a
constant-expression (87.15) that gives the value of the member.

The type specified in a constant declaration must be sbyte, byte, short, ushort, int, uint, long,
ulong, char, float,double, decimal, bool, string, an enum-type, or areference-type Each
constant-expression must yield a value of the target type or of atype that can be converted to the target type
by an implicit conversion (86.1).

The type of a constant must be at least as accessible as the constant itself (83.3.4).

A constant can itself participate in a constant-expression. Thus, a constant may be used in any construct
that requires a constant-expression. Examples of such congtructsinclude case labels, goto case
statements, enum member declarations, attributes, and other constant declarations.

As described in §7.15, a constant-expression isan expression that can be fully evaluated at compile-time.
Since the only way to create a non-null vaue of a reference-type other than string isto apply the new
operator, and since the new operator is not permitted in a constantexpression, the only possible value for
congtants of referencetypesother than stringisnull.

When a symbolic name for a constant value is desired, but when type of the value is not permitted in a
congtant declaration or when the value cannot be computed at compile-time by a constant-expression, a
readonly field (810.4.2) may be used instead.

A constant declaration that declares multiple constants is equivaent to multiple declarations of single
congtants with the same attributes, modifiers, and type. For example

class A

public const double X = 1.0, Y = 2.0, Z = 3.0;
}

is equivaent to

class A

public const double X
public const double Y
public const double Z

I
WN P

.0;
.0;
.0;

Congtants are permitted to depend on other constants within the same project as long as the dependencies
are not of acircular nature. The compiler automatically arranges to evaluate the constant declarationsin the
appropriate order. In the example

class A
public const int X = B.Z + 1;
public const int Y = 10;

}

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

class B

public const int Z = A.Y + 1;

the compiler first evauatesy, then evaluates z, and finaly evaluates X, producing the values10, 11, and
12. Congtant declarations may depend on congtants from other projects, but such dependencies are only
possible in one direction. Referring to the example above, if A and B were declared in separate projects, it
would be possible for A. X to depend on B. z, but B.. Z could then not simultaneously depend on A.Y.

10.4 Fields

Fields are members that represent variables. A field-declaration introduces one or more fields of agiven
type.

field-declaration:
attributes,, field-modifiers,, type variable-declarators ;

field-modifiers:
field-modifier
field-modifiers field-modifier

field-modifier:
new
public
protected
internal
private
static
readonly

variable-declarators:
variable-declarator
variable-declarators , variable-declarator

variable-declarator:

identifier

identifier = variable-initializer
variable-initializer:

expression

array-initializer
A fidd-declaration may include set of attributes (817), a new modifier (§10.2.2), avalid combination of
the four access modifiers (810.2.3, a static modifier (810.4.1), and a readonly modifier (810.4.2). The
attributes and modifiers apply to al of the members declared by thefield-declaration.

The type of afidd-declaration specifies the type of the members introduced by the declaration. The type is
followed by aligt of variable-declarators, each of which introduces a new member. A variable-declarator
consists of an identifier that names the member, optionally followed by an “=" token and avariable-
initializer (810.4.4) that givestheinitia value of the member.

The type of afield must be at least as accessible asthe fidld itself (83.3.4).

The vdue of afield is obtained in an expression using a simple-name (87.5.2) or a member-access (§7.5.4).
The value of afield is modified using an assignment (8§7.13).

A fidd declaration that declares multiple fields is equivalent to multiple declarations of single fields with
the same attributes, modifiers, and type. For example

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 173

C# LANGUAGE REFERENCE

174

class A
public static int X =1, Y, Z = 100;
is equivaent to
class A
{ . .
public static int X = 1;

public static int Y;
public static int Z = 100;

}

10.4.1 Static and instance fields
When afidd-declaration includes a static modifier, the fields introduced by the declaration are static
fields. When no static modifier is present, the fields introduced by the declaration are instancefields

Static fields and instance fields are two of the severa kinds of variables (85) supported by C#, and are at
timesreferred to asstatic variablesand instance variables.

A datic field identifies exactly one storage location. No matter how many instances of aclass are created,
thereis only ever one copy of a dtatic field. A datic field comes into existence when the type in which it is
declared isloaded, and ceases to exist when the type in which it is declared is unloaded.

Every instance of a class contains a separate copy of al instance fields of the class. An instance field comes
into existence when a new instance of its classis created, and ceases to exist when there are no references
to that instance and the destructor of the instance has executed.

When afield is referenced in a member -access (87.5.4) of theform E. W, if Misa dtatic field, E must denote
atype, and if M is an instance field, E must denote an instance.

The differences between static and instance members are further discussed in §10.2.5.

10.4.2 Readonly fields

When afidd-declarationincludes a readonly modifier, assignments to the fields introduced by the
declaration can only occur as part of the declaration or in a constructor in the same class. Specifically,
assgnments to areadonly fidd are permitted only in the following contexts:

In the variable-declarator that introduces the field (by including a variable-initializer in the declaration).

For an instance fidld, in the instance constructors of the class that contains the field declaration, or for a
satic field, in the static constructor of the class the contains the field declaration. These are aso the
only contexts in which it is valid to pass a readonly field asan out or ref parameter.

Attempting to assign to areadonly field or passit asan out or ref parameter in any other context isan
error.

10.4.2.1 Using static readonly fields for constants

A static readonly field is useful when a symbolic name for a constant value is desired, but when the
type of the value is not permitted in a const declaration or when the value cannot be computed at compile-
time by a constant-expression. In the example

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

public class Color

{
public static readonly Color Black = new Color(0, 0, 0);
public static readonly Color White = new Color(255, 255, 255);
public static readonly Color Red = new Color(255, 0, 0);
public static readonly Color Green = new Color(0, 255, 0);
public static readonly Color Blue = new Color(0, 0, 255);
private byte red, green, blue;
public Color(byte r, byte g, byte b) {
red = r;
green = g;
blue = b;
¥
}

the Black, Write, Red, Green, and Blue members cannot be declared as const members because their
values cannot be computed at compile-time. However, declaring the members as static readonly fieds
has much the same effect.

10.4.2.2 Versioning of constants and static readonly fields

Congtants and readonly fields have different binary versioning semantics. When an expression references a
constant, the value of the constant is obtained at compile-time, but when an expression references a
readonly field, the value of the field is not obtained until runtime. Consider an application that consists of
two separate projects.

namespace Projectl
public class Utils

public static readonly int X = 1;
}

namespace Project2

class Test

{
static void Main() {
Console._WriteLine(Projectl.Utils.X);
}

¥
}
The Projectl and Project2 namespaces denote two projects that are compiled separately. Because
Projectl.Utils.X isdeclared as a dtatic readonly field, the value output by the Console.WriteLine
statement is not known at compile-time, but rather is obtained at run-time. Thus, if the value of X is
changed and Projectl isrecompiled, the Console.WriteLine statement will output the new vaue
evenif Project2 isn't recompiled. However, had X been a constant, the value of X would have been
obtained at the time Project2 was compiled, and would remain unaffected by changesin Projectl until
Project2 isrecompiled.

10.4.3 Field initialization

Theinitial value of afied isthe default value (85.2) of the fidd' stype. When aclassisloaded, al stetic
fields areinitidlized to their default values, and when an instance of aclassis created, al instance fields are
initialized to their default values. It is not possible to observe the value of afield before this default
initialization has occurred, and afield is thus never “uninitialized”. The example

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 175

C# LANGUAGE REFERENCE

class Test

static bool b;

int 1;

static void Main() {
Test t = new Test();
Console.WriteLine(b = {0}, i = {1}, b, t.i);

}
produces the output

b =False, 1 =0

because b is automaticaly initialized to its default value when the classisloaded and i isautomatically
initialized to its default value when an instance of the classis created.

10.4.4 Variable initializers

Field declarations may include variable-initializer s. For static fields, variable initializers correspond to

assignment statements that are executed when the class is loaded. For instance fields, variable initializers
correspond to assignment statements that are executed when an instance of the classis created.

The example

class Test

static double x = Math.Sqrt(2.0);
int i = 100;
string s = "Hello™;
static void Main() {
Test t = new Test();
Console_WriteLine("x = {0}, i = {1}, s = {2}, x, t.i, t.s);

}
}
produces the output
X = 1.414213562373095, i = 100, s = Hello

because an assignment to x occurs when the classis loaded and assignmentsto i and s occur when an new
instance of the classis created.

The default value initiaization described in 810.4.3 occurs for al fields, including fields that have variable
initializers. Thus, when aclassis loaded, all static fields are first initialized to their default values, and then
the static field initializers are executed in textual order. Likewise, when an instance of aclassis created, all
instance fields are first initialized to their default values, and then the instance field initidlizers are executed
in textua order.

It is possible for static fields with variable initializers to be observed in their default value state, though this
is strongly discouraged as a matter of style. The example

class Test

{
static int a
static Int b

+ 1;
+ 1;
static void Main(Q {
Console.WriteLine("a = {0}, b = {1}, a, b);
}

}

176 Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

exhibits this behavior. Despite the circular definitions of aand b, the program is legal. It produces the
output

a=1, b =2
because the dtatic filds a and b are initialized to 0 (the default value for int) before their initidlizers are

executed. When theinitidizer for a runs, the value of b is zero, and so a isinitidized to 1. When the
initializer for b runs, thevalue of a isaready 1, and so b isinitidized to 2.

10.4.4.1 Static field initialization
The static field variable initializers of a class correspond to a sequence of assignments that are executed
immediately upon entry to the static constructor of the class. The variable initializers are executed in the

textual order they appear in the class declaration. The class loading and initialization process is described
further in 810.12

10.4.4.2 Instance field initialization

The instance field variable initiaizers of a class correspond to a sequence of assignments that are executed

immediately upon entry to one of the instance constructors of the class. The variableinitidizers are
executed in the textua order they appear in the class declaration. The class instance creation and

initialization process is described further in §10.10.

A variable initiaizer for an ingtance field cannot reference the instance being created. Thus, it is an error to
reference this in avariableinitidizer, asisit an error for avariable initializer to reference any instance
member through a simple-name. In the example

class A
int x = 1;
inty = x + 1; // Error, reference to instance member of this

the variableinitializer for y isin error because it references a member of the instance being created.

10.5 Methods

Methods implement the computations and actions that can be performed by a class. Methods are declared
using method-declarations:

method -decl aration:
method-header method-body

method-header:

attributes,; method-modifiers,,: return-type member-name (formal-parameter-list,,:)
method -modifiers;

method-modifier

method-modifiers method-modifier

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 177

C# LANGUAGE REFERENCE

178

method -modifier:
new
public
protected
internal
private
static

virtual
override

abstract
extern

return-type:
type
void
member-name:
identifier
interface-type . identifier
method -bodly:
block
A method-declaration may include set of attributes (817), anew modifier (§810.2.2), a valid combination of

the four access modifiers (§810.2.3), one of the static (810.5.2), virtual (810.5.3), override (§10.5.4),
or abstract (810.5.5 modifiers, and an extern (810.5.6) modifier.

The return-type of a method declaration specifies the type of the value computed and returned by the
method. Thereturn-type isvoid if the method does not return a vaue.

The member -name specifies the name of the method. Unless the method is an explicit interface member
implementation, the member -name is smply an identifier. For an explicit interface member implementation
(813.4.1) , the member -name consists of an interface-type followed by a“.” and an identifier.

The optional formal-parameter -list specifies the parameters of the method (810.5.1).

The return-type and each of the types referenced in the formal-parameter-list of a method must be at least
as accessible as the method itself (83.3.4).

For abstract and extern methods, the method-body consists simply of a semicolon. For all other
methods, the method-body consists of ablock which specifiesthe statements to execute when the method is
invoked.

The name and the formal parameter list of method defines the signature (83.4) of the method. Specificaly,
the signature of a method consists of its name and the number, modifiers, and types of its formal parameters.
The return type is not part of a method’ s signature, nor are the names of the formal parameters.

The name of a method must differ from the names of al other non-methods declared in the same class. In
addition, the signature of a method must differ from the signatures of al other methods declared in the
sameclass.

10.5.1 Method parameters
The parameters of a method, if any, are declared by the method’ sformal-parameter -list.

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

formal-parameter -list:
formalparameter
formal-parameter-list , formaljparameter

formal-parameter:

attributes,x parameter-modifier,y type identifier
parameter-modifier:

ref

out

params

The formal parameter list consists of zero or more formal-parameters, separated by commas. A formal-
parameter consists of an optional set of attributes (817), an optional modifier, atype, and an identifier.
Eachformal-parameter declares a parameter of the given type with the given name.

A method declaration creates a separate declaration space for parameters and local variables. Names are
introduced into this declaration space by the formal parameter list of the method and by local variable
declarations in the block of the method. All namesin the declaration space of a method must be unique.
Thus, it is an error for a parameter or local variable to have the same name as another parameter or local
variable.

A method invocation (87.5.5.1) crestes a copy, specific to that invocation, of the formal parameters and
local variables of the method, and the argument list of the invocation assigns values or variable references
to the newly created formal parameters. Within the block of a method, formal parameters can be referenced
by their identifiersin simple-name expressions (87.5.2).

There are four kinds of formal parameters:
Value parameters, which are declared without any modifiers.
Reference parameters, which are declared with the ref modifier.
Output parameters, which are declared with the out modifier.
Params parameters, which are declared with the params modifier.

As described in §3.4, parameter modifiers are part of amethod’ s signature.

10.5.1.1 Value parameters

A parameter declared with no modifiersis avalue parameter. A value parameter corresponds to aloca
variable that getsitsinitia value from the corresponding argument supplied in the method invocation.

When aformal parameter is a vaue parameter, the corresponding argument in a method invocation must be
an expression of atype that isimplicitly convertible (86.1) to the formal parameter type.

A method is permitted to assign new values to a value parameter. Such assignments only affect the local
storage location represented by the value paramete r—they have no effect on the actual argument given in
the method invocation.

10.5.1.2 Reference parameters

A parameter declared with a ref modifier is areference parameter. Unlike a value parameter, a reference
parameter does not create a new storage location. Instead, a reference parameter represents the same
storage location as the variable given as the argument in the method invocation.

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 179

C# LANGUAGE REFERENCE

180

When aformal parameter is a reference parameter, the corresponding argument in a method invocation
must consist of the keyword ref followed by a variable-reference(85.4) of the sametype asthe formal
parameter. A variable must be definitely assigned before it can be passed as a reference parameter.

Within a method, a reference parameter is aways considered definitely assigned.

The example
class Test
{
static void Swap(ref int x, ref int y) {
int temp = Xx;
X = Yy;
y = temp;
¥
static void Main(Q) {
inti =1, j = 2;
Swap(ref i, ref j);
3 Console_WriteLine("i = {0}, j = {1}, i, j);
}
produces the output

i=2,j=1

For the invocation of Swap inMain, x represents i and y represents j. Thus, the invocation has the effect
of swapping the values of i and j.

In amethod that takes reference parametersit is possible for multiple names to regresent the same storage
location. In the example

class A

string s;

void F(ref string a, ref string b) {
s "One™;
a "Two™ ;
b "Three";

}

void GO {
F(ref s, ref s);

}

theinvocation of F inG passesareferenceto s for both a and b. Thus, for that invocation, the names s, a,
and b al refer to the same storage location, and the three assignments all modify the instance fidld s.

10.5.1.3 Output parameters

A parameter declared with an out modifier is an output parameter. Similar to a reference parameter, an
output parameter does not create a new storage location. Instead, an output parameter represents the same
storage location as the variable given as the argument in the method invocation.

When aformal parameter is an output parameter, the corresponding argument in a method invocation must
consist of the keyword out followed by a variable-reference (85.4) of the same type as the formal
parameter. A variable need not be definitely assigned before it can be passed as anoutput parameter, but
following an invocation where a variable was passed as an output parameter, the variable is considered
definitely assigned.

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

Within a method, just like alocal variable, an output parameter isinitialy considered unassigned and must
be definitely assigned before its value is used.

Every output parameter of a method must be definitely assigned before the method returns.
Output parameters are typically used in methods that produce multiple return values. For example:

class Test

static void SplitPath(string path, out string dir, out string name) {
int i = path.Length;
while (i > 0) {
char ch = path[i - 1];
if (ch == "\\" || ch == /" |] ch == ":%) break;
i--;
¥ _ _
dir = path.Substring(0, i);
name = path.Substring(i);
}

static void Main(Q) {
string dir, name;
SplitPath('c:\\Windows\\System\\hello.txt", out dir, out name);
Console._WriteLine(dir);

3 Console._WriteLine(name);
}
The example produces the output:

c:\Windows\System\

hello.txt

Note that the di r and name variables can be unassigned before they are passed to SplitPath, and that
they are considered definitely assigned following the call.

10.5.1.4 Params parameters
A parameter declared with a params modifier is a params parameter. A params parameter must be the last
parameter in the forma parameter list, and the type of a params parameter must be a single-dimension array

type. For example, the types int[] and int[][] can be used as the type of a params parameter, but the
type int[,] cannot be used in thisway.

A params parameter enables a caller to supply values in one of two ways.

The caller may specify an expression of atype that isimplicitly convertible (86.1) to the formal
parameter type. In this case, the params parameter acts precisely like a value parameter.

Alternatively, the caller may specify zero or more expressions, where the type of each expressionis
implicitly convertible (86.1) to the element type of the formal parameter type. In this case, params
parameter isinitialized with an array of the formal parameter type that contains the vaue or values
provided by the caller.

A method is permitted to assign new vaues to a params parameter. Such assignments only affect the local
storage location represented by the params parameter.

The example

void F(params int[] values) {
Console.WriteLine('values contains %0 items'", values.Length);
foreach (int value in values)
Console._WriteLine("\t%0", value);

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 181

C# LANGUAGE REFERENCE

182

void GO {
inti =1, j =2, k=3;
F(new int[] {i, J, K);
FA, §. K);

shows amethod F with a params parameter of type int[]. Inthe method G, two invocations of F are
shown. In the first invocation, F is called with a single argument of type int[]. In the second invocation, F
is cdled with three expressions of type int. The output of each cal isthe same:

values contains 3 items:

1
2
3

A params parameter can be passed aong to another params parameter. In the example

void F(params object[] fparam) {
Console.WriteLine(fparam.Length);

}

void G(params object[] gparam) {
Console.WriteLine(gparam.Length);
F(gparam);

void HO {
G(1, 2, 3);

the method G has a params parameter of type object[]. When this parameter is used as an actua
argument for the method F, it is passed aong without modification. The output is:

3
3

The example

void F(params object[] fparam) {
Console.WriteLine(fparam.Length);

}

void G(params object[] gparam) {
Console.WriteLine(gparam.Length);
F((object) gparam); // Note: cast to (object)

void HO {
G(1, 2, 3);
shows that it is also possible to pass the params parameter as a single value by adding a cast. The output is:
3
1
10.5.2 Static and instance methods

When a method declaration includes astatic modifier, the method is said to be a static method. When no
static modifier is present, the method is said to be an instance method.

A static method does not operate on a specific instance, and it is an error to refer to this in a static method.
It is furthermore an error to include avirtual, abstract, or override modifier on a static method.

An instance method operates on a given instance of a class, and this instance can be accessed as this
(87.5.7).

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

The differences between static and instance members are further discussed in 810.2.5.

10.5.3 Virtual methods

When an instance method declaration includes a vi rtual modifier, the method is said to be a virtua
method. When no vi rtual modifier is present, the method is said to be a non-virtuad method.

Itisan error for amethod declaration that includes thevi rtual modifier to also include any one of the
static, abstract, or override modifiers.

The implementation of anon-virtual method is invariant. The implementation is the same whether the
method isinvoked on an instance of the classin which it is declared or an instance of aderived class. In
contrast, the implementation of a virtual method can be changed by derived classes. The process of
changing the implementation of an inherited virtual method is known as overriding the method (810.5.4).

In avirtual method invocation, the run-time type of the instance for which the invocation takes place
determines the actual method implementation to invoke. In a non-virtual method invocation, the compile-
time type of the instance is the determining factor. In precise terms, when a method named N isinvoked
with an argument list A on an instance with a compile-time type C and a run-time type R (whereR is either
C or aclass derived from C), the invocation is processed as follows:

Firgt, overload resolution is applied to C, N, and A, to select a specific method M from the set of methods
declared in and inherited by C. Thisis described in §7.5.5.1

Then, if M isanon-virtua method, M is invoked.
Otherwise, M is avirtual method, and the most derived implementation of M with respect to R isinvoked.

For every virtual method declared in or inherited by a class, there exists amost derived implementation of
the method with respect to that class. The most derived implementation of a virtual method M with respect
to aclassR is determined as follows:

If R containstheintroducing virtual declaration of M, then this is the most derived implementation of
M.

Otherwise, if R containsan override of M, then thisis the most derived implementation of M.
Otherwise, the most derived implementation of M is the same as that of the direct base class of R.

The following example illustrates the differences between virtual and non-virtual methods:
class A

public void F(Q) { Console.WriteLine("A.F"); }
public virtual void G() { Console.WriteLine("A.G"); }

class B: A

new public void F(Q) { Console._WriteLine("B.F'); }

public override void G() { Console.WriteLine(""B.G'"); }
}

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 183

C# LANGUAGE REFERENCE

184

class Test

{

static void Main(Q) {
B b =new BQ;
A a = b;
a.FQ);
b.FQ):
a.G();
b.GO;

}

}

In the example, A introduces a non-virtuad method F and avirtual method G. B introduces a new non-virtual
method F, thus hidingthe inherited F, and aso overridesthe inherited method G. The example produces the
output:

Notice that the statement a.G() invokesB.G, not A.G. Thisis because the run-time type of the instance
(which is B), not the compile-time type of the instance (which is A), determines the actual method
implementation to invoke,

Because methods are allowed to hide inherited methods, it is possible for a class to contain severa virtual
methods with the same signature. This does not present an ambiguity problem, since al but the most
derived method are hidden. In the example

class A

public virtual void F(Q) { Console._WriteLine(""'A.F'"); }
}

class B: A

public override void F() { Console.WriteLine("B.F'"); }

class C: B

new public virtual void F(Q) { Console._WriteLine("C.F"); }

class D: C

public override void F() { Console.WriteLine(""'D.F'"); }

class Test

static v0|d Main(Q) {
D d=new DQ;
A a = d;
B b= d;
C c = d;
a.FQ);
b.FQ);
.F
6RO
b

}

the C and D classes contain two virtual methods with the same signature: The one introduced by A and the
one introduced by C. The method introduced by C hides the method inherited from A. Thus, the override

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

declaration in D overrides the method introduced by C, and it is not possible for D to override the method
introduced by A. The example produces the output:
B.F

B.F
D.F

D.F
Note that it is possible to invoke the hidden virtual method by accessing an instance of D through a less
derived type in which the method is not hidden.

10.5.4 Override methods
When an instance method declaration includes an override modifier, the method overrides an inherited
virtual method with the same signature. Whereas avi rtual method declaration introduces a new method,

an override method declaration specializes an existing inherited virtual method by providing a new
implementation of the method.

It isan error for an override method declaration to include any one of the new, static,virtual, or
abstract modifiers.

The method overridden by an override declaration is known as the overridden base method For an

override method M declared in a class C, the overridden base method is determined by examining each base
class of C, starting with the direct base class of C and continuing with each successive direct base class,
until an accessible method with the same signature as M is located. For purposes of locating the overridden
base method, a method is considered accessible if it ispublic, if it isprotected, if it is protected
internal, or if itis internal and declared in the same project asC.

A compile-time error occurs unless al of the following are true for an override declaration:
An overridden base method can be located as described above.

The overridden base method is a virtual, abstract, or override method. In other words, the overridden
base method cannot be static or non-virtual.

The override declaration and the overridden base method have the same declared accessibility. In other
words, an override declaration cannot change the accessibility of the virtual method.

An override declaration can access the overridden base method using abase-access (87.5.8). Inthe
example
class A

int x;

public virtual void PrintFields(Q {
Console._WriteLine("x = {0}", X);
}
}

class B: A

int y;
public override void PrintFields() {
base.PrintFields();
3 Console._WriteLine("y = {0}, y);
}
thebase.PrintFields() invocation in B invokes the PrintFields method declared in A. A base-
access disables the virtual invocation mechanism and simply treats the base method as a non-virtual

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 185

C# LANGUAGE REFERENCE

186

method. Had the invocation in B been written ((A)this) .PrintFields(), it would recursively invoke
the PrintFields method declared in B, not the one declared in A.

Only by including an override modifier can a method override another method. In all other cases, a
method with the same signature as an inherited method simply hides the inherited method. In the example

class A

public virtual void FOQ {}

class B: A

public virtual void FOQ {+ // Warning, hiding inherited FQ
}

the F method in B does not include an override modifier and therefore does not override the F method in
A. Rather, the F method in B hides the method in A, and a warning is reported because the declaration does
not include a new modifier.

In the example

class A

public virtual void FQO {}

class B: A

new private void FQ {} // Hides A_.F within B

class C: B

public override void FO { // Ok, overrides A.F

the F method in B hides the virtual F method inherited from A. Since the new F in B has private access, its
scope only includes the class body of B and does not extend to C. The declaration of F in C is therefore
permitted to override the F inherited from A.

10.5.5 Abstract methods

When an instance method declaration includes an abstract modifier, the method is said to be an abstract
method. An abstract method isimplicitly also avirtual method.

An abstract declaration introduces a new virtua method but does not provide an implementation of the
method. Instead, non-abstract derived classes are required to provide their own implementation by
overriding the method. Because an abstract method provides no actual implementation, the method-body of
an abstract method simply consists of a semicolon.

Abstract method declarations are only permitted in abstract classes (§10.1.1.1).

Itis an error for an abstract method declaration to include any one of the static,virtual, or override
modifiers.

In the example

public abstract class Shape

public abstract void Paint(Graphics g, Rectangle r);

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

public class Ellipse: Shape

public override void Paint(Graphics g, Rectangle r) {
g-drawEllipse(r);

}

public class Box: Shape

public override void Paint(Graphics g, Rectangle r) {
g-drawRect(r);
}

}

the Shape class defines the abstract notion of a geometrical shape object that can paint itself. ThePaint
method is abstract because there is no meaningful default implementation. The ElNlipse and Box classes
are concrete Shape implementations. Because theses classes are non-abstract, they are required to override
the Paint method and provide an actua implementation.

Itisan error for a baseaccess (87.5.8) to reference an abstract method. In the example

class A

public abstract void FQ);

class B: A

public override void FQO {
base.FQ; // Error, base.F is abstract

}
an error is reported for the base . F() invocation because it references an abstract method.

10.5.6 External methods

A method declaration may include theextern modifier to indicate that the method is implemented
externally. Because an external method declaration provides no actua implementation, the method-body of
an external method simply consists of a semicolon.

The extern modifier is typicaly used in conjunction with a DI 1 Import attribute (§820.1.5), allowing
external methods to be implemented by DLLs (Dynamic Link Libraries). The execution environment may
support other mechanisms whereby implementations of external methods can be provided.

It isan error for an externa method declarati on to also include the abstract modifier. When an external
method includesaDI I Import attribute, the method declaration must dso include a static modifier.

This example demonstrates use of theextern modifier and the DI I Import attribute:
class Path

[DIlImport('kernel32", setlLastError=true)] i)
static extern bool CreateDirectory(string name, SecurityAttributes sa);

[DIlImport(“'kernel32", setLastError=true)]
static extern bool RemoveDirectory(string name);

[DIlImport(“'kernel32", setLastError=true)]
static extern int GetCurrentDirectory(int bufSize, StringBuilder buf);

[DIlImport('kernel32", setlLastError=true)]_
static extern bool SetCurrentDirectory(string name);

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 187

C# LANGUAGE REFERENCE

188

10.5.7 Method body
The method-body of a method declaration consists either of ablock or a semicolon.

Abstract and external method declarations do not provide a method implementation, and the method body
of an abstract or external method simply consists of a semicolon. For al other methods, the method body is
ablock (88.2) that contains the statements to execute when the method is invoked.

When the return type of amethod isvoid, return statements (88.9.4) in the method body are not
permitted to specify an expression. If execution of the method body of a void method completes normally
(that is, if control flows off the end of the method body), the method simply returns to the caller.

When the return type of amethod is not void, each return statement in the method body must specify an
expression of atype that isimplicitly convertible to the return type. Execution of the method body of a
vaue-returning method is required to terminate in a return statement that specifies an expression or in a
throw statement that throws an exception. It isan error if execution of the method body can complete
normally. In other words, in a value-returning method, control is not permitted to flow off the end of the
method bodly.

In the example

class A

{

public int FOQ {} // Error, return value required

public int GO {
return 1;
3

public int H(bool b) {
it (b) {

return 1;

else {
return O;

}
}

}

the value-returning F method isin error because control can flow off the end of the method body. The G and
H methods are correct because al possible execution paths end in a return statement that specifies a return
value.

10.5.8 Method overloading
The method overload resolution rules are described in §7.4.2

10.6 Properties

A property is a named attribute associated with an object or a class. Examples of properties include the
length of astring, the size of afont, the caption of awindow, the name of a customer, and so on. Properties
are anatura extension of fields—both are named members with associated types, and the syntax for
accessing fields and properties is the same. However, unlike fields, properties do not denote storage
locations. Instead, properties have accessorsthat specify the statements to execute in order to read or write
their values. Properties thus provide amechanism for associating actions with the reading and writing of an
object’ s attributes, and they furthermore permit such attributes to be computed.

Properties are declared using property-declarations:

property-declaration:
attributes,, property-modifiers,, type member-name { accessor-declarations }

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

property-modifiers:
property-modifier
property-modifiers property-modifier

property-modifier:
new
public
protected
internal
private
static

member-name:

identifier

interface-type . identifier
A property-declaration may include set of attributes (817), a new modifier (810.2.2), avalid combination
of the four access modifiers (810.2.3), and a static modifier (810.2.5).

The type of a property declaration specifies the type of the property introduced by the declaration, and the
member-name specifies the name of the property. Unless the property is an explicit interface member
implementation, the member -name is Smply an identifier. For an explicit interface member implementation
(813.4.1) , the member -name consists of an interface-type followed by a*“.” and an identifier.

The type of a property must be at least as accessible as the property itself (83.3.4).

The accessor-declarations, which must be enclosed in “{” and “}” tokens, declare the accessors (810.6.2)
of the property. The accessors specify the executable statements associated with reading and writing the

property.

Even though the syntax for accessing a property is the same as that for afield, a property is not classified as
avariable. Thus, it is not possible to pass a property asaref or out parameter.

10.6.1 Static properties

When a property declaration includes a static modifier, the property is said to be a static property. When
no static modifier is present, the property is said to be an instance property.

A dtatic property is not associated with a specific instance, and it is an error to refer to this inthe
accessors of a gtatic property. It is furthermore an error to include avi rtual, abstract, or override
modifier on an accessor of a tatic property.

An instance property is associated with a given instance of a class, and this instance can be accessed as
this (87.5.7) in the accessors of the property.

When a property is referenced in a member-access (87.5.4) of theform E. M, if M isa Static property, E must
denote atype, and if M is an instance property, E must denote an instance.

The differences between static and instance members are further discussed in §10.2.5.

10.6.2 Accessors
The accessor-declarations of a property specify the executable statements associated with reading and
writing the property.

accessor -declarations:
get-accessor-declaration set-accessor -declaration,y,
set-accessor-declaration get-accessor -declaration,

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 189

C# LANGUAGE REFERENCE

190

get-accessor -declaration:
accessor -modifiery, get accessor-body

set-accessor-declar ation:

accessor -modifiery, set accessor-body
accessor -modifier:

virtual

override
abstract

accessor -body:
block

The accessor declarations consist of aget-accessor -declaration, a set-accessor -declaration, or both. Each
accessor declaration consists of an optional accessor-modifier, followed by the token get or set, followed
by an accessor-body. For abstract accessors, the accessor-body is smply a semicolon. For al other
accessors, the accessor -body is ablock which specifies the statements to execute when the accessor is
invoked.

A get accessor corresponds to a parameterless method with a return value of the property type. Except as
the target of an assignment, when a property is referenced in an expression, the get accessor of the
property is invoked to compute the value of the property (87.1.1). The body of a get accessor must
conform to the rules for value-returning methods described in §10.5.7. In particular, al return statements
in the body of aget accessor must specify an expression that isimplicitly convertible to the property type.
Furthermore, a get accessor is required to terminate in a return statement or a throw statemert, and
control is not permitted to flow off the end of the get accessor’'s body.

A set accessor corresponds to a method with a single value parameter of the property type and a void
return type. The implicit parameter of a set accessor is aways named value. When aproperty is
referenced as the target of an assignment, the set accessor is invoked with an argument that provides the
new value (87.13.1). The body of aset accessor must conform to the rules for void methods describedin
§10.5.7. In particular, return statements in the set accessor body are not permitted to specify an
expression.

Sincea set accessor implicitly has a parameter named value, it isan error for alocal variable declaration
ina set accessor to use that name.

Based on the presence or absence of the get and set accessors, a property is classified as follows:
A property that includes both a get accessor and aset accessor is said to be aread-write property.

A property that has only aget accessor is said to be read-only property. It isan error for aread-only
property to be the target of an assignment.

A property that has only a set accessor is said to be write-only property. Except as the target of an
assignment, it is an error to reference awrite-only property in an expression.

Implementation note

Inthe .NET runtime, when a class declares a property X of type T, it isan error for the same classto also declarea
method with one of the following signatures:

T get_XQ;
void set X(T value);

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

The .NET runtime reserves these signatures for compatibility with programming languages that do not support
properties. Note that this restriction does not imply that a C# program can use method syntax to access properties or
property syntax to access methods. It merely means that properties and methods that follow this pattern are mutually
exclusive within the same class.

In the example

public class Button: Control

{

private string caption;

public string Caption {
get {
return caption;

éet {
if (caption != value) {
caption = value;
Repaint();

}
}

public override void Paint(Graphics g, Rectangle r) {
// Painting code goes here

}

the Button control declares a public Caption property. The get accessor of the Caption property
returns the string stored in the private caption field. The set accessor checksif the new valueis different
from the current value, and if 0, it stores the new value and repaints the control. Properties often follow the
pattern shown above: The get accessor smply returns avaue stored in a private field, and the set
accessor modifies the private field and then performs any additional actions required to fully update the
state of the object.

Given the Button class above, the following is an example of use of the Caption property:

Button okButton = new Button();

okButton.Caption = "OK"; // Invokes set accessor

string s = okButton.Caption; // Invokes get accessor

Here, the set accessor isinvoked by assigning a value to the property, and the get accessor isinvoked by
referencing the property in an expression.

The get and set accessors of a property are not distinct members, and it is not possible to declare the
accessors of a property separately. The example

class A

{

private string name;

public string Name { // Error, duplicate member name
get { return name; }

public string Name { // Error, duplicate member name
set { name = value; }

}

does not declare a single read-write property. Rather, it declares two properties with the same name, one
read-only and one write-only. Since two members declared in the same class cannot have the same name,
the example causes a compile-time error to occur.

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 191

C# LANGUAGE REFERENCE

When a derived class declares a property by the same name as an inherited property, the derived property
hides the inherited property with respect to both reading and writing. In the example

class A

public int P {
set {...}

}

class B: A

new public int P {

get {...}

}

the P property in B hidesthe P property in A with respect to both reading and writing. Thus, in the
statements

B b =new BQ;

b.P = 1; // Error, B_.P is read-only

((A)B).ﬁ = 1; // Ok, reference to A.P
the assgnment to b . P causes an error to be reported, since the read-only P property in B hides the write-
only P property in A. Note, however, that a cast can be used to access the hidden P property.

Unlike public fields, properties provide a separation between an object’s internal state and its public
interface. Consider the example:

class Label
private int X, y;
private string caption;

public Label(int x, int y, string caption) {
this.x = X;
this.y = y;
this.caption = caption;

public int X {
get { return x; }

public int Y {
get { return y; }

public Point Location {
get { return new Point(x, y); }

public string Caption {
get { return caption; }

}

Here, the Label class usestwo int fidds, x and y, to store its location. The location is publicly exposed
both asan X and aY property and as aLocation property of type Point. If, in afuture version of Label,
it becomes more convenient to store the location as aPoint internally, the change can be made without
affecting the public interface of the class:

class Label

private Point location;
private string caption;

192 Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

public Label(int x, int y, string caption) {
this.location = new Point(X, y);
this.caption = caption;

public int X {
get { return location.x; }

public int Y {
get { return location.y; }

public Point Location {
get { return location; }

public string Caption {
get { return caption; }

}

Had x andy instead been public readonly fields, it would have been impossible to make such a change
to theLabel class.

Exposing state through propertiesis not necessarily any less efficient than exposing fields directly. In
particular, when a property accessor is non-virtua and contains only a small amount of code, the execution
environment may replace calls to accessors with the actual code of the accessors. This process is known as
inlining, and it mekes property access as efficient as field access, yet preserves the increased flexibility of
properties.

Sinceinvoking a get accessor is conceptually equivalent to reading the value of afidd, it is considered bad
programming style for get accessorsto have observable side-effects. In the example

class Counter

private int next;

public int Next {
get { return next++; }

}

the value of the Next property depends on the number of times the property has previously been accessed.

Thus, accessing the property produces an observable side-effect, and the property should instead be
implemented as a method.

The “no Sde-effects’ convention for get accessors doesn’t mean that get accessors should always be
written to simply return values stored in fields. Indeed, get accessors often compute the value of a property
by accessing multiple fields or invoking methods. However, a properly designed get accessor performs no
actions that cause observable changes in the state of the object.

Properties can be used to delay initiaization of aresource until the moment it isfirst referenced. For
example:

public class Console

{

private static TextReader reader;
private static TextWriter writer;
private static TextWriter error;

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 193

C# LANGUAGE REFERENCE

194

public static TextReader In {
get {
it (reader == null) {
reader = new StreamReader(File.OpenStandardinput());

by
return reader;
}
¥
public static TextWriter Out {
get {
if (writer == null) {
writer = new StreamWriter(File.OpenStandardOutput());
return writer;
}
}
public static TextWriter Error {
get {
if (error == null) {
error = new StreamWriter(File.OpenStandardError());
return error;
b
}

}

The Consol e class contains three properties, In,Out, and Error, that represent the standard input, output,
and error devices. By exposing these members as properties, the Console class can delay their
initialization until they are actually used. For example, upon first referencing the Out property, asin

Console.Out._WriteLine("Hello world™);

the underlying TextWriter for the output device is created. But if the application makes no referenceto
the In and Error properties, then no objects are created for those devices.

10.6.3 Virtual, override, and abstract accessors

Provided a property isnot static, a property declaration may include avirtual modifier or an
abstract modifier on either or both of its accessors. There is no requirement that the modifiers be the
same for each accessor. For example, it is possible for a property to have a non-virtual get accessor and a
virtua set accessor.

The virtual accessors of an inherited property can be overridden in a derived class by including a property
declaration that specifies override directives on its accessors. This is known as an overriding property
declaration An overriding property declaration does not declare a new property. Instead, it smply
specializes the implementations of the virtual accessors of an existing property.

It isan error to mix override and non-override accessors in a property declaration. |f a property declaration
includes both accessors, then both must include an override directive or both must omit it.

An overriding property declaration must specify the exact same access modifiers, type, and name as the
inherited property, and it can override only those inherited accessors that are virtual. For example, if an
inherited property has a non-virtual get accessor and avirtual set accessor, then an overriding property
declaration can only include an override set accessor.

When both accessors of an inherited property are virtual, an overriding property declaration is permitted to
only override one of the accessors.

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

Except for differences in declaration and invocation syntax, virtual, override, and abstract accessors behave
exactly like avirtual, override and abstract methods. Specificaly, the rules described in §10.5.3, §10.5.4,
and §10.5.5apply asif accessors were methods of a corresponding form:

A get accessor corresponds to a parameterless method with a return value of the property type and a set
of modifiers formed by combining the modifiers of the property and the modifier of the accessor.

A set accessor corresponds to a method with a single value parameter of the property type, avoid
return type, and a set of modifiers formed by combining the modifiers of the property and the modifier
of the accessor.

In the example
abstract class A
int y;

public int X {
virtual get {
return O;
3

}
public int Y {

get {
return y;

virtual set {
y = value;

}

protected int Z {
abstract get;
abstract set;

}
}
X isaread-only property with avirtual get accessor, Y is a readwrite property with a non-virtual get
accessor and avirtual set accessor, and Z is a read-write property with abstract get and set accessors.
Because the containing classis abstract, Z is permitted to have abstract accessors.

A class that derives from A is shown below:

class B: A

{

int z;

public int X {
override get {
return base.X + 1;
}

}

public int Y {
override set {
base.Y = value < 0? 0: value;

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 195

C# LANGUAGE REFERENCE

196

protected int Z {
override get {
return z;

override set {
z = value;
}

}
}

Here, because their accessors specify the override maodifier, the declarations of X, Y, and z are overriding
property declarations. Each property declaration exactly matches the access modifiers, type, and name of
the corresponding inherited property. The get accessor of X and the set accessor of Y usethe base

keyword to access the inherited accessors. The declaration of Z overrides both abstract accessors—thus,
there are no outstanding abstract function membersin B, and B is permitted to be a non-abstract class.

10.7 Events

Events permit a class to declare notifications for which clients can attach executable code in the form of
event handlers. Events are declared using event-declarations

event-declaration:
event-fidd-declaration
event-property-declaration

eventfield-declaration:
attributes,; event-modifiers,y event type variable-declarators

event-property-declaration:
attributesq event-modifiers,y event type member-name { accessor-declarations 3

event-modifiers:;
event-modifier
event-modifiers event-modifier

event-modifier:
new
public
protected
internal
private
static

An event declaration is either an event-field-declaration or an event-property-declaration. In both cases, the

declaration may include set of attributes (817), anew modifier (810.2.2), avalid combination of the four
access modifiers (810.2.3), and a static modifier (810.2.5).

The type of an event declaration must be a delegate-type (815), and that delegate-type must be at least as
accessible as the event itself (83.3.4).

An event field declaration corresponds to afield-declaration (810.4) that declares one or more fields of a
delegate type. The readonly modifier is not permitted in an event field declaration.

An event property declaration corresponds to a property-declaration (810.6) that declares aproperty of a
delegate type. The member-name and accessor -declarationsare equivaent to those of a property
declaration, except that an event property declaration must include both a get accessor and a set accessor,
and that the accessors are not permitted to include virtual, override, or abstract modifiers.

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

Within the program text of the class or struct that contains an event member declaration, the event member
corresponds exactly to a private field or property of a delegate type, and the member can thus be used in
any context that permits afield or property.

Outside the program text of the class or struct that contains an event member declaration, the event member
can only be used as the |eft hand operand of the += and -= operators (87.13.3. These operators are used to

attach or remove event handlers to or from an event member, and the access modifiers of the event member
control the contexts in which the operations are permitted.

Since += and -= are the only operations that are permitted on an event member outsidethe type that
declares the event member, externa code can append and remove handlers for an event, but cannot in any
other way obtain or modify the vaue of the underlying event field or event property.

In the example
public delegate void EventHandler(object sender, Event e);
public class Button: Control

public event EventHandler Click;

protected void OnClick(Event e) {

3 it (Click = null) Click(this, e);

public void Reset() {
Click = null;

}

there are no restrictions on usage of the Click event field within the Button class. Asthe example
demonstrates, the field can be examined, modified, and used in delegate invocation expressions. The
onClick method in the Button class“raises’ the Click event. The notion of raising an event is precisely
equivaent to invoking the delegate represented by the event member—thus, there are no specid language
congtructs for raising events. Note that the delegate invocation is preceded by a check that ensures the
delegateis non-null.

Outside the declaration of the Button class, the Cl'ick member can only be used on the left hand side of
the += and -= operators, asin

b.Click += new EventHandler(...);

which agppends a delegate to the invocation list of the Click event, and
b.Click -= new EventHandler(...);

which removes a delegate from the invocation list of the Click event.

In an operation of theform x +=y or x -=y, when x is an event member and the reference takes place
outside the type that contains the declaration of x, the result of the operation isvoid (as opposed to the
vaue of x after the assgnment). This rule prohibits external code from indirectly examining the underlying
delegate of an event member.

The following example shows how event handlers are attached to instances of theButton class above:

public class LoginDialog: Form

Button OkButton;
Button CancelButton;

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 197

C# LANGUAGE REFERENCE

public LoginDialog() {
OkButton = new Button(...);

OkButton.Click += new EventHandler(OkButtonClick);
CancelButton = new Button(...);

CancelButton.Click += new EventHandler(CancelButtonClick);

}

void OkButtonClick(object sender, Event e) {
// Handle OkButton.Click event
}

void CancelButtonClick(object sender, Event e) {
// Handle CancelButton.Click event
}
}
Here, the LoginDialog constructor creates two Button instances and attaches event handlers to the
Click events.

Event members are typically fields, asin the Button example above. In cases where the storage cost of one
field per event is not acceptable, a class can declare event properties instead of event fields ard use a
private mechanism for storing the underlying delegates. (In scenarios where most events are unhandled,
using afield per event may not be acceptable. The ability to use a properties rather than fields allows for
space vs. speed tradeoffs to be made by the developer.)

In the example

class Control: Component

{

// Unique keys for events

static readonly object mouseDownEventKey = new object();
static readonly object mouseUpEventKey = new object();

// Return event handler associated with key

protected Delegate GetEventHandler(object key) {...}

// Set event handler associated with key

protected void SetEventHandler(object key, Delegate handler) {...}
// MouseDown event property

public event MouseEventHandler MouseDown {
get {
return (MouseEventHandler)GetEventHandler(mouseDownEventKey) ;

set

}

{
SetEventHandler(mouseDownEventKey, value);

b
// MouseUp event property

public event MouseEventHandler MouseUp {

get {
return (MouseEventHandler)GetEventHandler (mouseUpEventKey) ;

set
SetEventHandler(mouseUpEventKey, value);
}

}
}

the Control classimplements an internal storage mechanism for events. The SetEventHandler method
associates a delegate value with a key, and the GetEventHandler method returns the delegate currently

198 Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

associated with a key. Presumably the underlying storage mechanism is designed such that there is no cost
for associating anul I delegate value with akey, and thus unhandled events consume no storage.

Implementation note

Inthe .NET runtime, when a class declares an event member X of a delegate type T, itisan error for the same classto
also declare a method with one of the following signatures:

void add_X(T handler);
void remove_X(T handler);

The .NET runtime reserves these signatures for compatibility with programming languages that do not provide
operatorsor other language constructs for attaching and removing event handlers. Note that this restriction does not
imply that a C# program can use method syntax to attach or remove event handlers. It merely means that events and
methods that follow this pattern are mutually exclusive within the same class.

When a class declares an event member, the C# compiler automatically generates theadd_X and remove_X methods
mentioned above. For example, the declaration

class Button

public event EventHandler Click;

can be thought of as

class Button

{
private EventHandler Click;
public void add_Click(EventHandler handler) {
Click += handler;
¥
public void remove Click(EventHandler handler) {
Click -= handler;
b
¥

The compiler furthermore generates an event member that referencesthe add_X and remove_X methods. From the
point of view of a C# program, these mechanics are purely implementation details, and they have no observable
effectsother than theadd_ X and remove_X signatures being reserved.

10.8 Indexers

Indexers permit instances of a class to be indexed in the same way as arrays. Indexers are declared using
indexer -declarations:

indexer -declaration:;

attributes,, indexer-modifiers,; indexer-declarator { accessor-declarations 3}
indexer -modifiers:;

indexer-modifier

indexer-modifiers indexer-modifier
indexer -modifier:

new

public

protected
internal

private

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 199

C# LANGUAGE REFERENCE

200

indexer -declarator:
type this [formal-index-parameter-list 7]
type interface-type . this [formal-index-parameter-list]

formal-index-parameter-list:
formal-index-parameter
formal-index-parameter-list , formal-indexparameter

formal-index-parameter:
attributes,,; type identifier

An indexer-declaration may include set of attributes (817), a new modifier (§10.2.2), and avalid
combination of the four access modifiers (810.2.3.

The type of an indexer declaration specifies the element type of the indexer introduced by the declaration.
Unless the indexer is an explicit interface member implementation, thetypeis followed by the keyword
this. For an explicit interface member implementation, thetype isfollowed by an interface-type, a*“.",
and the keyword this. Unlike other members, indexers do not have user-defined names.

The formal-index-parameter -list specifies the parameters of the indexer. The formal parameter list of an
indexer corresponds to that of a method (810.5.1), except that at least one parameter must be specified, and
that the ref and out parameter modifiers are not permitted.

The type of an indexer and each of the types referenced in the formal-index-parameter -list must be at least
as accessible as the indexer itself (83.3.4).

The accessor-declarations, which must be enclosed in “{” and “}" tokens, declare the accessors of the
indexer. The accessors specify the executable statements associated with reading and writing indexer
elements.

Even though the syntax for accessing an indexer element is the same as that for an array element, an
indexer element is not classified as avariable. Thus, it is not possible to pass an indexer element asaref
or out parameter.

The formal parameter list of an indexer defines the signature (83.4) of the indexer. Specificdly, the
signature of an indexer consists of the number and types of its forma parameters. The element typeis not
part of an indexer’ s signature, nor are the names of the forma parameters.

The signature of an indexer must differ from the signatures of al other indexers declared in the same class.
Indexers and properties are very similar in concept, but differ in the following ways.
A property isidentified by its name, whereas an indexer isidentified by its signature.

A property is accessed through a simple-name (87.5.2) or a member-access (87.5.4), whereas an indexer
element is accessed through an element-access (87.5.6.2.

A property can be a static member, whereas an indexer is always an instance member.

A get accessor of aproperty corresponds to a method with no parameters, whereas a get accessor of
an indexer corresponds to a method with the same formal parameter list as the indexer.

A set accessor of aproperty corresponds to a method with a single parameter named value, whereas a
set accessor of an indexer corresponds to a method with the same formal parameter list as the indexer,
plus an additiona parameter named value.

It isan error for an indexer accessor to declare alocal variable with the same name as an indexer
parameter.

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

With these differences in mind, al rules defined in 810.6.2 and §10.6.3apply to indexer accessors as well
as property accessors.

Implementation note

Inthe .NET runtime, when a class declares an indexer of type T with a formal parameter list P, itisanerror for the
same class to also declare a method with one of the following signatures:

T get_Iltem(P);

void set_ltem(P, T value);
The .NET runtime reserves these signatures for compatibility with programming languages that do not support
indexers. Note that thisrestriction does not imply that a C# program can use method syntax to access indexers or

indexer syntax to access methods. It merely means that indexers and methods that follow this pattern are mutually
exclusive within the same class.

The example below declares a BitArray class that implements an indexer for accessing the individual bits
in the bit array.

class BitArray

{
int[] bits;
int length;

public BitArray(int length) {
if (length < 0) throw new ArgumentException();
bits = new int[((length - 1) >> 5) + 1];
this.length = length;

}

public int Length {
get { return length; }

public bool this[int index] {
get {
if (index < 0 |] index >= length) {
throw new IndexOutOfRangeException();

by
return (bits[index >> 5] & 1 << index) != 0;
set {
if (index < O |] index >= length) {
throw new IndexOutOfRangeException();

1
it (value) {
bits[index >> 5] |= 1 << index;

}
else

bits[index >> 5] &= ~(1 << index);
}

}
}

}

An instance of the BitArray class consumes substantially less memory than a corresponding bool []
(each value occupies only one bit instead of one byte), but it permits the same operationsasa bool [].

The following CountPrimes classuses aBitArray and the classical “sieve” dgorithm to compute the
number of primes between 1 and a given maximum:

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 201

C# LANGUAGE REFERENCE

class CountPrimes

{
static int Count(int max) {
BitArray flags = new BitArray(max + 1);
int count = 1;
for (int 1 = 2; 1 <= max; i++) {
it (Iflags[il)
for (int j =1 * 2; J <= max; j += i) Flags[j] = true;
count++;
}
}
return count;
static void Main(string[] args) {
int max = int.Parse(args[0]);
int count = Count(max);
Console.WriteLine("Found {0} primes between 1 and {1}', count, max);
b
}

Note that the syntax for accessing elements of the BitArray is precisely the same as for abool [].

10.8.1 Indexer overloading
The indexer overload resolution rules are described in §7.4.2

10.9 Operators

Operators permit a class to define expression operators that can be applied to instances of the class.
Operators are declared using operator -declarations:

operator -declaration:
attributes,, operator-modifiers operator -declarator block

operator -modifiers:
public static
static public

operator-declarator:
unary-operator -declarator

binary-operator-declarator
conver sion-oper ator-declarator

unary-operator -declarator:
type operator overloadable-unary-operator (type identifier)

overloadable-unary-operator: one of
+ - ! ~ ++ - true false

binary-operator-declarator:
type operator overloadable-binary-operator (type identifier , type identifier)

overloadable-binary-operator: one of

+ _ * / % & | N << >> == 1= > < >= <=
conver sion-oper ator -declarator:

implicit operator type (type identifier)

explicit operator type (type identifier)
There are three categories of operators. Unary operators (810.9.1), binary operators (810.9.2), and
conversion operators (810.9.3).

202 Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

The following rules apply to al operator declarations.

An operator declaration must include both apublic and a static modifier, and is not permitted to
include any other modifiers.

The parameter(s) of an operator must be value parameters. It is an error to for an operator declaration to
specify ref or out parameters.

The signature of an operator must differ from the signatures of all other operators declaredin the same
class.

All types referenced in an operator declaration must be at least as accessible as the operator itself
(83.34.
Each operator category imposes additional restrictions, as described in the following sections.
Like other members, operators declared in a base class are inherited by derived classes. Because operator
declarations aways require the class or struct in which the operator is declared to participate in the
signature of the operator, it is not possible for an operator declared in a derived class to hide an operator

declared in abase class. Thus, the new modifier is never required, and therefore never permitted, in an
operator declaration.

For dl operators, the operator declaration includes ablock which specifies the statements to execute when
the operator isinvoked. The block of an operator must conform to the rules for value-returning methods
described in §10.5.7.

Additiona information on unary and binary operators can be found in §7.2.
Additional information on conversion operators can be found in 86.4.

10.9.1 Unary operators
The following rules apply to unary operator declarations, where T denotes the class or struct type that
contains the operator declaration:

A unary +, -, 1, or ~ operator must take a single parameter of type T and can return any type.

A unary ++ or -- operator must take a single parameter of type T and must return type T.

A unary true or false operator must take a single parameter of type T and must return type bool.

The signature of a unary operator consists of the operator token (+, -, I, ~, ++, --, true, or false) and
the type of the single formal parameter. The return type is not part of a unary gperator’s signature, nor is the
name of the formal parameter.

The true and false unary operators require pair-wise declaration. An error occurs if a class declares one
of these operators without also declaring the other. The true and false operators are further described in
§7.16.

10.9.2 Binary operators
A binary operator must take two parameters, at least one of which must be of the class or struct typein
which the operator is declared. A binary operator can return any type.

The sgnature of a binary operator consists of the operator token (+, -, *, 7, %, &, |, ®, <<, >>,==,1=,> <,
>=, or <=) and the types of the two formal parameters. The return typeis not part of a binary operator’s
signature, nor are the names of the formal parameters.

Certain binary operators require pair-wise declaration. For every declaration of either operator of a pair,
there must be a matching declaration of the other operator of the pair. Two operator declarations match

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 203

C# LANGUAGE REFERENCE

204

when they have the same return type and the same type for each parameter. The following operators require
pair-wise declaration:

operator == and operator 1=
operator > and operator <

operator >=and operator <=

10.9.3 Conversion operators

A conversion operator declaration introduces a user-defined conversion (§86.4) which augments the pre-
defined implicit and explicit conversions.

A conversion operator declaration that includes the implicit keyword introduces a user-defined implicit
conversion. Implicit conversions can occur in avariety of situations, including function member
invocations, cast expressions, and assignments. This is described further in 86.1.

A conversion operator declaration that includes the explicit keyword introduces a user-defined explicit
conversion. Explicit conversions can occur in cast expressions, and are described further in §6.2.

A conversion operator converts from a source type, indicated by the parameter type of the conversion
operator, to atarget type, indicated by the return type of the conversion operator. A class or struct is
permitted to declare a conversion from a source type Sto atarget typeT provided al of the following are
true:

S and T are different types.

Either S or T isthe class or struct type in which the operator declaration takes place.
Neither S nor T isobject or an interface-type.

T isnot abaseclassof S,and S ishot abase class of T.

From the second rule it follows that a conversion operator must either convert to or from the class or struct
type in which the operator is declared. For example, it is possible for a class or struct type C to define a
conversionfrom C to int and from int to C, but not from intto bool.

It is not possible to redefine a pre-defined conversion. Thus, conversion operators are not alowed to
convert from or to object because implicit and explicit conversions aready exist between object and all

other types. Likewise, neither of the source and target types of a conversion can be a base type of the other,
since a conversion would then aready exist.

User-defined conversions are not alowed to convert from or to interface-types. This restriction in particular
ensures that no user-defined transformations occur when converting to an interface-type and that a
conversion to an interface-type succeeds only if the object being converted actually implements the
specified interface-type.

The signature of a conversion operator consists of the source type and the target type. (Note that thisis the

only form of member for which the return type participates in the signature.) Theimplicit or explicit
classification of aconversion operator is not part of the operator’ s signature. Thus, a class or struct cannot

declare both an implicit and an explicit conversion operator with the same source and target types.

In general, user-defined implicit conversions should be designed to never throw exceptions and never lose
information. If a user-defined conversion can give rise to exceptions (for example because the source
argument is out of range) or loss of information (such as discarding high- order bits), then that conversion
should be defined as an explicit conversion.

In the example

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

public struct Digit

byte value;

public Digit(byte value) {
if (value < 0 || value > 9) throw new ArgumentException();
this.value = value;

}
public static implicit operator byte(Digit d) {
return d.value;

public static explicit operator Digit(byte b) {
return new Digit(b);
¥

}

the conversion from Digitto byte isimplicit because it never throws exceptions or loses information, but
the conversion from byte to Digit isexplicit since Digit can only represent a subset of the possible
values of abyte.

10.10 Instance constructors

Congtructors implement the actions required to initialize instances of a class. Constructors are declared
using constructor -declarations:

constructor-declaration:
attributes,, constructor -modifiersyy constructor-declarator block

constructor-modifiers:
constructor-modifier
constructor-modifiers constructor -modifier

constructor-modifier:
public
protected
internal
private

constructor-declarator:
identifier (formal-parameter-list,x) constructor -initializer o
constructor-initializer:
base (argumentlisty)
this (argumentlisty)
A constructor-declaration may include set of attributes (817) and a valid combination of the four access
modifiers (810.2.3).

The identifier of a constructor-declarator must name the class in which the constructor is declared. If any
other name is specified, an error occurs.

The optiona formal-parameter -list of a constructor is subject to the same rules as theformal-parameter-list
of amethod (810.5). The formal parameter list defines the signature (83.4) of a constructor and governs the
process whereby overload resolution (87.4.2) selects a particular constructor in an invocation.

Each of the types referenced in the for mal-parameter-list of a constructor must be at least as accessible as
the congtructor itself (83.3.4).

The optiona constructor-initializer specifies another constructor to invoke before executing the statements
giveninthe block of this constructor. Thisis described further in §10.10.1

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 205

C# LANGUAGE REFERENCE

206

The block of aconstructor declaration specifies the statements to execute in order to initialize a new
instance of the class. This corresponds exactly to the block of an instance method with a void return type
(810.5.7).

Congtructors are not inherited. Thus, a class has no other constructors than those that are actually declared
inthe class. If a class contains no constructor declarations, a default constructor is automatically provided

(810.10.4).
Congtructors are invoked by object-creation-expressions (§87.5.10.1) and through constructor-initializers.

10.10.1 Constructor initializers

All congtructors (except for the constructors of class object) implicitly include an invocation of another
constructor immediately before the first statement in the block of the constructor. The constructor to
implicitly invoke is determined by the constructor -initializer:

A constructor initializer of theform base(. . .) causes a constructor from the direct base class to be
invoked. The constructor is selected using the overload resolution rules of §7.4.2. The set of candidate
constructors consists of al accessible constructors declared in the direct base class. If the set of
candidate congtructors is empty, or if asingle best constructor cannot be identified, an error occurs.

A constructor initializer of theform this(. . .) causes acongtructor from the class itsalf to be invoked.
The constructor is selected using the overload resolution rules of 87.4.2. The set of candidate
constructors consists of all accessible constructors declared in the classitsdlf. If the set of candidate
congtructorsis empty, or if asingle best constructor cannot be identified, an error occurs. If a
constructor declaration includes a constructor initiaizer that invokes the constructor itself, an error
occurs.

If a constructor has no constructor initiaizer, a constructor initializer of the form base() isimplicitly
provided. Thus, a constructor declaration of the form

cC---) {---}
is exactly equivalent to

C(-...): baseQ {---}

The scope of the parameters given by the formal-parameter -list of a constructor declaration includes the
congtructor initializer of that declaration. Thus, a constructor initializer is permitted to access the
parameters of the constructor. For example:

class A

public ACint x, int y) {}

class B: A

public B(int x, int y): base(x + vy, x - y) {}

A congtructor initializer cannot access the instance being created. It is therefore an error to reference this
in an argument expression of the congtructor initidizer, asisit an error for an argument expression to
reference any instance member through a smple-name.

10.10.2 Instance variable initializers

When a constructor has no constructor initializer or a constructor initializer of theform base(...), the
constructor implicitly performs the initializations specified by thevariable-initializers of the instance fields
declared in the class. This corresponds to a sequence of assignments that are executed immediately upon

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

entry to the congtructor and before the implicit invocation of the direct base class constructor. The variable
initializers are executed in the textual order they appear in the class declaration.

10.10.3 Constructor execution

It is useful to think of instance variable initializers and constructor initiaizers as statements that are
automatically inserted before the first statement in the block of a constructor. The example

class A

int x =1, y =
public AQ {

count = O;
3

public A(int n) {
count = n;

-1, count;

}
}
class B: A
{
double sqrt2 = Math.Sqrt(2.0);
ArrayList items = new ArrayList(100);
int max;
public B(Q: this(100) {
items_Add("'default™);
b
public B(int n): base(n — 1) {
max = n;
}

contains severa variable initializers and aso contains constructor initializers of both forms (base and

this). The example corresponds to the code shown below, where each comment indicates an automatically

inserted statement (the syntax used for the automatically inserted constructor invocations isn’t valid, but

merely serves to illustrate the mechanism).

class A

int x, y, count;
public AQ {
1;

X =
y = -1;
object();
count = O;
}
public A(int n) {
X = 1;
y = -1;
object();
count = n;
}
}
class B: A
{

double sqrt2;
ArrayList items;

int max;

Copyright O Microsoft Corporation1999-2000. All Rights Reserved.

// Variable initializer
// Variable initializer
// Invoke object() constructor

// Variable initializer
// Variable initializer
// Invoke object() constructor

207

C# LANGUAGE REFERENCE

208

public BQ: this(100) {
B(100); // Invoke B(int) constructor
items._Add("'default™);

public B(int n): base(n — 1) {

sqrt2 = Math.Sqrt(2.0); // Variable initializer
items = new ArrayList(100); // Variable initializer

A(n — 1); // Invoke A(int) constructor
max = n;

}
}

Note that variable initializers are transformed into assignment staements, and that these assignment

statements are executed befor e the invocation of the base class congtructor. This ordering ensures that al
instance fields are initidized by their variable initializers before any statements that have access to the

ingance are executed. For example:

class A

public AQ {
PrintFields();

public virtual void PrintFieldsQ {}

class B: A

{ .

int x = 1;

int y;

public BQO {

}

public override void PrintFields() {

Console.WriteLine("x = {0}, v = {1}", X, Yy);

}

When new B() is used to create an instance of B, the following output is produced:
x =1, y=0
The vaue of x is 1 because the variable initidizer is executed before the base class constructor is invoked.

However, the value of y is 0 (the default value of an int) because the assignment to y is not executed until
after the base class constructor returns.

10.10.4 Default constructors

If aclass contains no constructor declarations, a default constructor is automatically provided. The default
congtructor is aways of the form

public CQ): base() {}

where C isthe name of the class. The default constructor smply invokes the parameterless constructor of
the direct base class. If the direct base class does not have an accessible parameterless constructor, an error
occurs. In the example

class Message

object sender;
string text;

}

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

adefault constructor is provided because the class contains no constructor declarations. Thus, the example
is precisdy equivaent to

class Message

object sender;
string text;

) public Message(): base(Q) {}

10.10.5 Private constructors

When a class declares only private constructorsit is not possible for other classes to derive from the class
or create instances of the class (an exception being classes nested within the class). Private constructorsare
commonly used in classes that contain only static members. For example:

public class Trig

{
private Trig(Q { // Prevent instantiation

public const double Pl = 3.14159265358979323846;

public static double Sin(double x) {...}

public static double Cos(double x) {...}
public static double Tan(double x) {...}

}
The Trig class provides a grouping of related methods and constants, but is not intended to be instantiated.

It therefore declares a single private constructor. Note that at least one private constructor must be declared
to suppress the automatic generation of a default constructor (which always has public access).

10.10.6 Optional constructor parameters

The this(...) form of congtructor initiaizersis commonly used in conjunction with overloading to
implement optional constructor parameters. In the example

class Text

{ public Text(): this(0, 0, null) {}

public Text(int x, int y): this(x, y, null) {}

public Text(int x, int y, string s) {
// Actual constructor implementation

}
}

the first two congtructors merely provide the default values for the missing arguments. Both use a
this(...) congtructor initializer to invoke the third constructor, which actually does the work of
initializing the new instance. The effect is that of optional constructor parameters:

Text t1 = new Text(); // Same as Text(0, O, null)
Text t2 = new Text(5, 10); // Same as Text(5, 10, null)
Text t3 = new Text(5, 20, "Hello™);

10.11 Destructors

Destructors implement the actions required to destruct instances of a class. Destructors are declared using
destructor -declarations:

destructor -declaration:
attributes,; ~ identifier () block

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 209

C# LANGUAGE REFERENCE

210

A destructor-declaration may include set of attributes(817).

The identifier of adestructor -declarator must name the class in which the destructor is declared. If any
other name is specified, an error occurs.

The block of a destructor declaration specifies the statements to execute in order to initialize a new instance
of the class. This corresponds exactly to the block of an instance method with avoid return type (8 10.5.7).

Destructors are not inherited. Thus, a class has no other destructors than those that are actually declared in
the class.

Destructors are invoked automatically, and cannot be invoked explicitly. An instance becomes dligible for
destruction when it is no longer possible for any code to use the instance. Execution of the destructor or
destructors for the instance may occur at any time after the instance becomes eligible for destruction. When
an instance is destructed, the destructors in an inheritance chain are called in order, from most derived to
least derived.

10.12 Static constructors

Static constructors implement the actions required to initialize a class. Static constructors are declared using
stati c-congtructor -declarations:

static-constructor -declaration:
attributes,; static identifier () block

A dtatic-constructor-declaration may include set of attributes (§17).

The identifier of a static-constructor -declarator must name the class in which the static constructor is
declared. If any other name is specified, an error occurs.

The block of a static constructor declaration specifies the statements to execute in order to initialize the
class. This corresponds exactly to the block of a static method with avoid return type (8 10.5.7).

Static constructors are not inherited.

Static constructors are invoked automatically, and cannot be invoked explicitly. The exact timing and
ordering of dtatic constructor execution is not defined, though severa guarantees are provided:

The static constructor for a class is executed before any instance of the classis created.
The static constructor for a class is executed before any static member of the classiis referenced.

The static constructor for aclass is executed before the static constructor of any of its derived classes are
executed.

The dtatic constructor for a class never executes more than once.
The example
using System;
class Test

static void Main() {
A.FQO;

B.F():

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

class A

{
static AQ {
Console._WriteLine(Init A"™);
b

public static void FQ {
Console.WriteLine("A.F");

}

class B

static B {
Console_WriteLine('Init B");
}

public static void F() {
Console.WriteLine("B.F"™);
}

}
could produce either the output:

Init A
A.F
Init B
B.F

or the output:

Init B
Init A

A.F
B.F

because the exact ordering of static constructor execution is not defined.
The example
using System;

class Test

static void Main() {
Console._WriteLine("1");

B.GQ;
Console_WriteLine('"2");

}
}

class A

static AQ {
Console._WriteLine(Init A"™);

}

class B: A

static B {
Console._WriteLine(Init B");

public static void G() {
Console.WriteLine("B.G"™);
}

}

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 211

C# LANGUAGE REFERENCE

is guaranteed to produce the output:

Init A
Init B
B.G

because the static constructor for the class A must execute before the static constructor of the class B, which
derives fromit.

10.12.1 Class loading and initialization

It is possible to congtruct circular dependencies that alow static fields with variable initiaizers to be
observed in their default value state.

The example
class A

public static int X = B.Y + 1
class B

public static intY = A.X + 1;

static void Main(Q) {
Console.WriteLine("X
b

{0}, Y = {1}", A.X, B.Y);
}

produces the output

X=1,Y =2

To execute the Main method, the system first loads class B. The static constructor of B proceeds to compute
the initial value of Y, which recursively causes A to be loaded because the value of A. X isreferenced. The

static constructor of A in turn proceeds to compute the initid value of X, and in doing so fetches the default
vaueof Y, whichiszero. A.X isthusinitialized to 1. The process of loading A then completes, returning to
the calculation of theinitial value of Y, the result of which becomes 2.

Had the Main method instead been located in class A, the example would have produced the output
X=2,Y=1

Circular references in static field initiaizers should be avoided since it is generaly not possible to
determine the order in which classes containing such references are |oaded.

212 Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

11. Structs

11.1 Struct declarations

struct-declaration:
attributes,, struct-modifiers,, struct identifier struct-interfaces, struct-body ;o

11.1.1 Struct modifiers

structmodifiers;
struct-modifier
struct-modifiers structmodifier

structmodifier:
new
public
protected
internal
private

11.1.2 Interfaces
structinterfaces:
interface-typelist
11.1.3 Struct body
struct-body:
{ struct-member-declarations,,, }
11.2 Struct members

structmember-declarations:
struct-member-declaration
struct-member-declarations struct-member -declaration

structmember-declaration:
class-member -declaration
11.3 Struct examples

11.3.1 Database integer type

The DB Int struct below implements an integer type that can represent the complete set of values of theint
type, plus an additional state that indicates an unknown value. A type with these characteristicsis
commonly used in databases.

public struct DBInt

// The Null member represents an unknown DBInt value.
public static readonly DBInt Null = new DBInt(Q);

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 213

C# LANGUAGE REFERENCE

214

// When the defined field is true, this DBInt represents a known value
// which is stored in the value field. When the defined field is false,
// this DBInt represents an unknown value, and the value fTield is O.

int value;
bool defined;

// Private constructor. Creates a DBInt with a known value.

DBInt(int value) {
this.value = value;
this.defined = true;

}

// The IsNull property is true if this DBInt represents an unknown value.

public bool IsNull { get { return ldefined; } }

// The Value property is the known value of this DBInt, or O if this
// DBInt represents an unknown value.

public int Value { get { return value; } }
// Implicit conversion from int to DBInt.

public static implicit operator DBInt(int x) {
return new DBInt(x);
}

// Explicit conversion from DBInt to int. Throws an exception if the
// given DBInt represents an unknown value.

public static explicit operator int(DBInt x) {
if (Ix.defined) throw new InvalidOperationException();
return x.value;

}

public static DBInt operator +(DBInt x) {
return Xx;

public static DBInt operator -(DBInt x) {
return x.defined? new DBInt(-x.value): Null;

public static DBInt operator +(DBInt x, DBInt y) {

return x.defined && y.defined? new DBInt(x.value -value): Null;

+
<

public static DBInt operator -(DBInt x, DBInt y) {
return x.defined && y.defined? new DBInt(x.value - y.value): Null;
}

public static DBInt operator *(DBInt x, DBInt y) {

return x.defined && y.defined? new DBInt(x.value -value): Null;

*
<

public static DBInt operator /(DBInt x, DBInt y) {
return x.defined && y.defined? new DBInt(x.value / y.value): Null;
b

public static DBInt operator %(DBInt x, DBInt y) {
return x.defined && y.defined? new DBInt(x.value % y.value): Null;

public static DBBool operator ==(DBInt x, DBInt y) {
return x.defined && y.defined?
new DBBool(x.value == y.value): DBBool .Null;

}

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

public static DBBool operator !=(DBInt x, DBInt y) {
return x.defined && y.defined?
new DBBool (x.value != y._value): DBBool .Null;

}

public static DBBool operator >(DBInt x, DBInt y) {
return x.defined && y.defined?
new DBBool(x.value > y.value): DBBool._.Null;

}

public static DBBool operator <(DBInt x, DBInt y) {
return x.defined && y.defined?
new DBBool(x.value < y.value): DBBool .Null;

}

public static DBBool operator >=(DBInt x, DBInt y) {
return x.defined && y.defined?
new DBBool(x.value >= y.value): DBBool.Null;

}

public static DBBool operator <=(DBInt x, DBInt y) {
return x.defined && y.defined?
new DBBool(x.value <= y.value): DBBool .Null;

}
}

11.3.2 Database boolean type

The DBBool struct below implements a three-valued logica type. The possible values of thistype are
DBBool .True, DBBool .False, and DBBool .Nul I, where the Nul I member indicates an unknown vaue.
Such three-valued logica types are commonly used in databases.

public struct DBBool

{
// The three possible DBBool values.

public static readonly DBBool Null = new DBBool(0);

public static readonly DBBool False = new DBBool(-1);
public static readonly DBBool True = new DBBool(1);

// Private field that stores -1, 0, 1 for False, Null, True.
int value;
// Private constructor. The value parameter must be -1, 0, or 1.

DBBool (int value) {
this.value = value;
}

// Properties to examine the value of a DBBool. Return true if this
// DBBool has the given value, false otherwise.

public bool IsNull { get { return value == 0; } }
public bool IsFalse { get { return value <O0; } }
public bool IsTrue { get { return value > 0; } }

// Implicit conversion from bool to DBBool. Maps true to DBBool.True and
// fTalse to DBBool.False.

public static implicit operator DBBool(bool x) {
return x? True: False;

// Explicit conversion from DBBool to bool. Throws an exception if the
// given DBBool is Null, otherwise returns true or false.

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 215

C# LANGUAGE REFERENCE

public static explicit operator bool(DBBool x) {
it (x.value == 0) throw new InvalidOperationException();
return x.value > 0O;

// Equality operator. Returns Null if either operand is Null, otherwise
// returns True or False.

public static DBBool operator ==(DBBool x, DBBool y) {
if (x.value == 0 || y-value == 0) return Null;
return x.value == y_value? True: False;

// Inequality operator. Returns Null if either operand is Null, otherwise
// returns True or False.

public static DBBool operator !=(DBBool x, DBBool y) {
if (x.value == 0 || y-value == 0) return Null;
return x.value != y_value? True: False;

}

// Logical negation operator. Returns True if the operand is False, Null
// it the operand is Null, or False if the operand is True.

public static DBBool operator !(DBBool x) {
return new DBBool (-x.value);
}

// Logical AND operator. Returns False if either operand is False,
// otherwise Null if either operand is Null, otherwise True.

public static DBBool operator &(DBBool x, DBBool y) {
return new DBBool(x.value < y.value? x.value: y.value);
}

// Logical OR operator. Returns True if either operand is True, otherwise
// Null if either operand is Null, otherwise False.

public static DBBool operator |(DBBool x, DBBool y) {
return new DBBool(x.value > y.value? x.value: y.value);

// Definitely true operator. Returns true if the operand is True, false
// otherwise.

public static bool operator true(DBBool x) {
return x.value > 0;
}

// Definitely false operator. Returns true iIf the operand is False, false
// otherwise.

public static bool operator false(DBBool x) {
return x.value < 0;

216 Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

12. Arrays

An array isadata structure that contains a number of variables which are accessed through computed
indices. The variables contained in an array, aso cdled the elements of the array, are dl of the same type,
and thistype is called the element type of the array.

An array has arank which determines the number of indices associated with each array element. The rank
of an array is aso referred to as the dimensions of the array. An array with arank of oneiscaled asingle-
dimensiona array, and an array with a rank greater than oneis called a multi dimensional array.

Each dimension of an array has an associated length which is an integral number greater than or equal to
zero. The dimension lengths are not part of the type of the array, but rather are established when an instance
of the array type is created at run-time. The length of a dimension determines the valid range of indices for
that dimension: For adimension of length N, indices can range from 0 to N — 1 inclusive. The total number
of elementsin an array is the product of the lengths of each dimension in the array. If one or more of the
dimensions of an array have alength of zero, the array is said to be empty.

The element type of an array can be any type, including an array type.

12.1 Array types
An array type iswritten as anon-array-type followed by one or more rank-specifiers:

array-type:
non-array-type rank-specifiers

non-array-type:

type
rank-specifiers:

rank -specifier

rank-specifiers rank-specifier
rank-specifier:

[dimseparators, 1

dim-separators:

élim—separators
A non-array-typeisany typethat is not itself an array-type.
Therank of an array typeis given by the leftmost rank-specifier in thearray-type: A rank-specifier

indicates that the array is an array with arank of one plus the number of “,” tokens in the rank-specifier.
The element type of an array typeis the type that results from deleting the leftmost rank-specifier:

An array type of theform T[R] isan array with rank R and a non-array element type T.

An array type of theform T[R][R4]...[Rv] isan array with rank R and an element type T[R1]...[Rn].

In effect, the rank-specifiers are read from left to right before the final non-array element type. For example,
thetype int[][,,]1[.] isasngle-dimensiona array of three-dimensiond arrays of two-dimensiona
arraysof int.

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 217

C# LANGUAGE REFERENCE

218

Arrayswith arank of one are called single-dimensional arrays. Arrays with arank greater than one are
caled multi-dimensional arrays, and are aso referred to as two-dimensional arrays, three-dimensiona
arrays, and so on.

At run-time, avalue of an array type can be nul I or areference to an instance of that array type.

12.1.1 The System.Array type

The System.Array typeisthe abstract base type of al array types. An implicit reference conversion
(86.1.4) exists from any array type to System.Array, and an explicit reference conversion (86.2.3) exists
from System._Array to any array type. Note that System.Array isitsdf not an array-type. Rather, itis a
class-type from which al array-types are derived.

At run-time, avalue of type System.Array can be null or areference to an instance of any array type.

12.2 Array creation
Array instances are created by array-creation-expressions (87.5.10.2) or by field or locd varigble
declarations that include an array-initializer (812.6).

When an array instance is created, the rank and length of each dimension are established and then remain
constant for the entire lifetime of the instance. In other words, it is not possible to change the rank of an
existing array instance, nor isit possible to resize its dimensions.

An array instance created by an array-creation-expression is aways of an array type. The System. Array
type is an abstract type that cannot be instantiated.

Elements of arrays created by array-creation-expressions are aways initialized to their default value (85.2).

12.3 Array element access

Array elements are accessed using element-access expressions (87.5.6.1) of theform A[11, 12, ..., In],
where A isan expression of an array type and each 1x isan expresson of type int. The result of an array
element accessis avariable, namely the array element selected by the indices.

The elements of an array can be enumerated using a foreach statement (88.8.4).

12.4 Array members
Every array type inherits the members declared by the System. Array type.

12.5 Array covariance

For any two reference-types A and B, if an implicit reference conversion (86.1.4) or explicit reference
conversion (86.2.3) exists from A to B, then the same reference conversion also exists from the array type
A[R] to the array type B[R], where R isany given rank-specifier (but the same for both array types). This
relationship is known as array covariance. Array covariance in particular means that a value of an array

type A[R] may actualy be areference to an instance of an array type B[R], provided an implicit reference
conversion existsfrom B to A.

Because of array covariance, assignments to elements of reference type arrays include a run-time check
which ensures that the value being assigned to the array element is actualy of a permitted type (87.13.1).
For example:

class Test

static void Fill(object[] array, int index, int count, object value) {

for (int 1 = index; 1 < index + count; i++) array[i] = value;

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

static void Main(Q {
string[] strings = new string[100];
Fill(strings, O, 100, "Undefined™);
Fill(strings, 0, 10, null);
Fill(strings, 90, 10, 0);
}
}

Theassignment to array[i] intheFill method implicitly includes a run-time check which ensures that
the object referenced by value is either nulll or an instance of atype that is compatible with the actual
element type of array. In Main, the first two invocations of Fi Il succeed, but the third invocation causes
an ArrayTypeMismatchException to be thrown upon executing the first assignment to array[i]. The
exception accurs because aboxed int cannot be stored in astring aray.

Array covariance specifically does not extend to arrays of value-types. For example, no conversion exists
that permitsan int[] to be treated asan object[].

12.6 Array initializers

Array initializers may be specified in field declarations (§10.4), local variable declarations (88.5.1), and
array creation expressions (87.5.10.2):

array-initializer:
{ variable-initializer-list,,; }
{ variable-initializer-li , 3}
variable-initializer-list:
variable-initializer
variable-initializer-list , variable-initializer
variable-initializer:
expression
array-initializer
An array initializer consists of a sequence of variable initializers, enclosed by “{” and“}” tokensand

separated by “,” tokens. Each variableinitializer is an expression or, in the case of a multi-dimensiona
array, anested array initializer.

The context in which an array initidizer is used determines the type of the array being initialized. In an
array creation expression, the array type immediately precedes the initidizer. In afield or variable
declaration, the array type is the type of the field or variable being declared. When an array initializer is
used in afield or variable declaration, such as;

int[]1 a = {0, 2, 4, 6, 8};
it issimply shorthand for an equivalent array creation expression:
int[] a = new int[] {0, 2, 4, 6, 8}

For asingle-dimensional array, the array initializer must consist of a sequence of expressions that are
assignment compatible with the element type of the array. The expressionsinitiaize array elementsin
increasing order, starting with the element at index zero. The number of expressions in the array initializer
determines the length of the array instance being created. For example, the array initializer above creates an
int[] instance of length 5 and then initializes the instance with the following values:

a[0] = 0; a[1] = 2; a[2] = 4; a[3] = 6; a[4] = 8;
For amulti-dimensional array, the array initializer must have as many levels of nesting asthere are

dimensions in the array. The outermost nesting level corresponds to the leftmost dimension and the
innermost nesting level corresponds to the rightmost dimension. The length of each dimension of the array

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 219

C# LANGUAGE REFERENCE

is determined by the number of elements at the corresponding nesting level in the array initializer. For each
nested array initializer, the number of e ements must be the same as the other array initializers at the same
level. The example:

int[,] b = {{0, 1}, {2, 3}, {4, 5}, {6. 7}. {8, 9}};

creates atwo-dimensiona array with alength of five for the leftmost dimension and a length of two for the
rightmost dimension:

int[,] b = new int[5, 2];
and then initializes the array instance with the following values:

b[O, 0] = 0; b[0, 1] = 1;
b[1l, O] = 2: b[1, 1] = 3:
b[2, 0] = 4; b[2, 1] = 5;
b[3, 0] = 6; b[3, 1] = 7;
b[4, O] = 8: b[4, 1] = 9:

When an array creation expression includes both explicit dimension lengths and an array initidizer, the
lengths must be constant expressions and the number of elements at each nesting level must match the
corresponding dimension length. Some examples:

int i = 3;

int[]J x = new int[3] {0, 1, 2}; // OK

int[] v = new int[i] {0, 1, 2}; // Error, i not a constant

int[1 z = new int[3] {0, 1, 2, 3}; // Error, length/initializer mismatch

Here, theinitidizer for y isin error because the dimension length expression is not a constant, and the
initializer for z isin error because the length and the number of eements in the initializer do not agree.

220 Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

13. Interfaces

13.1 Interface declarations
An interface-declaration is atype-declaration (89.5) that declares a new interface type.

interface-declaration:
attributesyy interface-modifiersy: interface identifier interface-basey: interfacebody ;on

An interface-declaration consists of an optiona set of attributes (817), followed by an optional set of
interface-modifiers (813.1.1), followed by the keyword interface and an identifier that names the
interface, optionally followed by an optional interface-base specification (813.1.2), followed by ainterface-
body (813.1.3), optionally followed by a semicolon.

13.1.1 Interface modifiers
An interface-declaration may optionally include a sequence of interface modifiers:

interface-modifiers;
interface-modifier
interface-modifiers interface-modifier

interface-modifier:
new
public
protected
internal
private

It isan error for the same modifier to appear multiple times in an interface declaration.

The new modifier is only permitted on nested interfaces. It specifies that the interface hides an inherited
member by the same name, as described in §10.2.2.

The public, protected, internal, and private modifiers control the accessibility of the interface.

Depending on the context in which the interface declaration occurs, only some of these modifiers may be
permitted (83.3.1).

13.1.2 Base interfaces

An interface can inherit from zero or more interfaces, which are called the explicit base interfacesof the
interface. When an interface has more than zero explicit base interfaces then in the declaration of the
interface, the interface identifier is followed by a colon and a comma-separated list of base interface
identifiers.
interface-base:

interface-typelist

The explicit base interfaces of an interface must be at least as accessible as the interface itself (83.3.4). For
example, it isan error to specify a private or internal interface in the interface-base of a public
interface.

It isan error for an interface to directly or indirectly inherit from itself.

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 221

C# LANGUAGE REFERENCE

222

The base interfaces of an interface are the explicit base interfaces and their base interfaces. In other words,
the sat of base interfaces is the complete transitive closure of the explicit base interfaces, their explicit base
interfaces, and so on. In the example

interface IControl
{

void Paint();
b
interface ITextBox: IControl
{

void SetText(string text);
3
interface IListBox: IControl
{

void Setltems(string[] items);
3

interface IComboBox: ITextBox, IListBox {}
the base interfaces of 1ComboBox are 1Control, 1TextBox, and IListBox.

An interface inherits all members of its base interfaces. In other words, the 1ComboBox interface above
inherits members SetText and Setltems aswell asPaint.

A class or struct that implements an interface aso implicitly implements al of the interface’ s base
interfaces.

13.1.3 Interface body
The interface-body of an interface defines the members of the interface.

interface-body:
{ interface-member-declarations,,: 3}

13.2 Interface members

The members of an interface are the members inherited from the base interfaces and the members declared
by the interface itsalf.

interface-member -declarations:
interface-member-declaration
interface-member-declarations interface-member-declaration

interface-member -declaration:
interface-method-declaration
interface-property-declaration
interface-event-declaration
interface-indexer-declaration

An interface declaration may declare zero or more members. The members of an interface must be methods,
properties, events, or indexers. An interface cannot contain constants, fields, operators, constructors,
destructors, static constructors, or types, nor can an interface contain static members of any kind.

All interface members implicitly have public access. It is an error for interface member declarations to
include any modifiers. In particular, interface members cannot be declared with the abstract, public,
protected, internal, private, virtual , override, or static modifiers.

The example
public delegate void StringListEvent(IStringList sender);

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

public interface IStringList

{
void Add(string s);

int Count { get; }
event StringListEvent Changed;

3 string this[int index] { get; set; }

declares an interface that contains one each of the possible kinds of members: A method, a property, an
event, and an indexer.

An interface-declaration creates a new declaration space (83.1), and the interface-member -declarations
immediately contained by the interface-declaration introduce new members into this declaration space. The
following rules apply to interface-member-declarations:

The name of a method must differ from the names of all properties and events declared in the same

interface. In addition, the signature (83.4) of a method must differ from the signatures of all other
methods declared in the same interface.

The name of a property or event must differ from the names of al other members declared in the same
interface.

The signature of an indexer must differ from the signatures of all other indexers declared in the same
interface.

The inherited members of an interface are specifically not part of the declaration space of the interface.
Thus, an interface is dlowed to declare a member with the same name or signature as an inherited member.
When this occurs, the derived interface member is said to hide the base interface member. Hiding an
inherited member is not considered an error, but it does cause the compiler to issue awarning. To suppress
the warning, the declaration of the derived interface member must include anew modifier to indicate that
the derived member is intended to hide the base member. This topic is discussed further in 83.5.1.2

If anew modifier isincluded in a declaration that doesn’t hide an inherited member, awarning isissued to
that effect. Thiswarning is suppressed by removing the new modifier.

13.2.1 Interface methods
Interface methods are declared using interface-method-declarations:
interface-method-declaration:

attributes,x newoy return-type identifier (formal-parameter-list,,)

The attributes, return-type, identifier, and formal-parameter-list of an interface method declaration have
the same meaning as those of a method dechration in a class (§10.5). An interface method declaration is
not permitted to specify a method body, and the declaration therefore always ends with a semicolon.

13.2.2 Interface properties
Interface properties are declared using i nterface-property-declarations:

interface-property-declaration:
attributes,x newoy type identifier { interfaceaccessors }

interface-accessors;

get ;
set ;
get ; set ;
set ; get ;

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 223

C# LANGUAGE REFERENCE

224

The attributes, type, and identifier of an interface property declaration have the same meaning as those of a
property declaration in a class (§10.6).

The accessors of an interface property declaration correspond to the accessors of a class property

declaration (810.6.2), except that no modifiers can be specified and the accessor body must always be a
semicolon. Thus, the accessors simply indicate whether the property is readwrite, read-only, or write-only.

13.2.3 Interface events
Interface events are declared using interface event-declarations:
interface-event-declaration:

attributes,y newo,y event type identifier

The attributes, type, and identifier of an interface event declaration have the same meaning as those of an
event declaration in aclass (§10.7).

13.2.4 Interface indexers
Interface indexers are declared using interface-indexer-declarations:

interface-indexer-declaration:
attributese: newox type this [formal-index-parameter-list 1 { interface-accessors 3}

The attributes, type, and formal-parameter-list of an interface indexer declaration have the same meaning
asthose of an indexer declaration in aclass (§10.8).

The accessors of an interface indexer declaration correspond to the accessors of a classindexer declaration
(810.8), except that no modifiers can be specified and the accessor body must always be a semicolon. Thus,
the accessors simply indicate whether the indexer is read-write, read-only, or write-only.

13.2.5 Interface member access

Interface members are accessed through member access (§87.5.4) and indexer access (§7.5.6.2) expressions
of theform 1 .M and 1[A], where 1 isan instance of an interface type, M is a method, property, or event of
that interface type, and A is an indexer argument list.

For interfaces that are strictly single-inheritance (each interface in the inheritance chain has exactly zero or
one direct base interface), the effects of the member lookup (87.3), method invoceation (§7.5.5.1), and
indexer access (87.5.6.2) rules are exactly the same asfor classes and structs: More derived members hide
less derived members with the same name or signature. However, for multiple -inheritance interfaces,
ambiguities can occur when two or more unrelated base interfaces declare members with the same name or
signature. This section shows several examples of such situations. In all cases, explicit casts can be
included in the program code to resolve the ambiguities.

In the example
interface IList

int Count { get; set; }
3

interface ICounter

void Count(int i);
}

interface IListCounter: IList, ICounter {}

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

class C
{
void Test(lListCounter x) {
X.Count(1);
X.Count = 1;
((IList)x).Count 1;
((1Counter)x) -Count(1);

}
the first two statements cause compile-ti

Chapter

// Error, Count is ambiguous
// Error, Count is ambiguous
// Ok, invokes IList.Count.set
// Ok, invokes ICounter.Count

me errors because the member lookup (87.3) of Count in

IListCounter isambiguous. Asillustrated by the example, the ambiguity is resolved by casting x to the
appropriate base interface type. Such casts have no run-time costs—they merely consist of viewing the
instance as aless derived type at compile-time.

In the example

interface llInteger

o

void Add(int i);

-

interface I1Double

void Add(double d);

SRS

interface INumber: lInteger,

class C

void Test(INumber n) {
n.Add(1);
n.Add(1.0);
((I'Integer)n) .Add(1);
((1Double)n) - Add(1);
}
}
theinvocation n.Add (1) is ambiguous
candidate methods to be declared in the
because only 1Double.Add is applicabl
method, and thus no ambiguity.
In the example
Enterface IBase
void F(int i);
}

nterface ILeft: IBase

new void F(int i);

i
{
b

nterface IRight: IBase

i
i

void GQ;
}
i

nterface IDerived: lLeft, IR

IDouble {}

// Error, both Add methods are applicable
// Ok, only IDouble.Add is applicable

// Ok, only llnteger.Add is a candidate
// Ok, only IDouble.Add is a candidate

because a method invocation (87.5.5.1) requires all overloaded
same type. However, the invocation n.Add (1.0) is permitted
le. When explicit casts are inserted, there is only one candidate

ight {}

Copyright O Microsoft Corporation1999-2000. All Rights Reserved.

225

C# LANGUAGE REFERENCE

226

class A
{
void Test(lIDerived d) {
d.F(D); // Invokes lLeft.F
((1Base)d) .F(1); // 1Invokes IBase.F
((ILeft)d).F(1); // Invokes lLeft.F
((IRight)d) .F(1); // 1Invokes IBase.F

}

the I1Base.F member is hidden by the ILeft.F member. Theinvocation d.F(1) thus selects ILeft.F,
eventhough 1Base . F appears to not be hidden in the access path that leads through IRight.

The intuitive rule for hiding in multiple-inheritance interfaces is smply this: If amember is hidden in any

access path, it ishidden in al access paths. Because the access path from I1Derived to ILeft to 1Base
hides 1Base . F, the member is aso hidden in the access path from IDerived to IRight to I1Base.

13.3 Fully qualified interface member names

An interface member is sometimes referred to by its fully qualified name. The fully qualified name of an

interface member consists of the name of the interface in which the member is declared, followed by a dot,
followed by the name of the member. For example, given the declarations

interface IControl

void Paint(Q);

interface ITextBox: IControl

void SetText(string text);
}

the fully qualified name of Paintis IControl.Paint and the fully qualified name of SetText is
ITextBox.SetText.

Note that the fully qualified name of a member references the interface in which the member is declared.
Thus, in the example above, it is not possible to refer to Paint as 1TextBox.Paint.

When an interface is part of a namespace, the fully quaified name of an interface member includes the
namespace name. For example

namespace System
public interface ICloneable

object Clone();

}
}

Here, the fully qudified name of the Clone method isSystem. ICIoneable.Clone.

13.4 Interface implementations

Interfaces may be implemented by classes and structs. To indicate that a class or struct implements an
interface, the interface identifier isincluded in the base class list of the class or struct.

interface ICloneable

object Clone();

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

interface IComparable

{

int CompareTo(object other);

class ListEntry: ICloneable, IComparable

public object Clone() {.-.}

public int CompareTo(object other) {...}
}

A class or struct that implements an interface aso implicitly implements all of the interface’ s base
interfaces. Thisistrue even if the class or struct doesn't explicitly list al base interfaces in the base class
list.
interface I1Control
{
void Paint();
}
nterface ITextBox: IControl

void SetText(string text);

i
{
}
class TextBox: 1TextBox
{

public void Paint() {..-}

public void SetText(string text) {...}

Here, classTextBox implementsboth 1Control and 1 TextBox.

13.4.1 Explicit interface member implementations

For purposes of implementing interfaces, a class or struct may declare explicit interface member
implementations An explicit interface member implementation is a method, property, event, or indexer
declaration that references a fully qualified interface member name. For example

interface ICloneable

o

object Clone();

-

interface IComparable

e

int CompareTo(object other);

S}

class ListEntry: ICloneable, IComparable

pos

object ICloneable.Clone() {---}
int IComparable.CompareTo(object other) {...}

Here, 1ICIoneable.Clone and IComparable.CompareTo are explicit interface member
implementations.

It is not possible to access an explicit interface member implementation through its fully qualified namein
amethod invocation, property access, or indexer access. An explicit interface member implementation can
only be accessed through an interface instance, and is in that case referenced smply by its member name.

Itisan error for an explicit interface member implementation to include access modifiers, asisit an error to
include theabstract, virtual, override, or static modifiers.

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 227

C# LANGUAGE REFERENCE

228

Explicit interface member implementations have different accessibility characteristics than other members.
Because explicit interface member implementations are never accessible through their fully qualified name
in amethod invocation or a property access, they are in a sense private. However, since they can be
accessed through an interface instance, they are in a sense a'so public.

Explicit interface member implementations serve two primary purposes.

Because explicit interface member implementations are not accessible through classor struct instances,
they alow interface implementations to be excluded from the public interface of aclass or struct. This
is particularly useful when a class or struct implements an internal interface that is of no interest to a
consumer of the class or struct.

Explicit interface member implementations allow disambiguation of interface members with the same
signature. Without explicit interface member implementations it would be impossible for a class or
struct to have different implementations of interface members with the same signature and return type,
aswould it be impossible for a class or struct to have any implementation at all of interface members
with the same signature but with different return types.

For an explicit interface member implementation to be valid, the class or struct must name an interface in
its base class list that contains a member whose fully quaified name, type, and parameter types exactly
match those of the explicit interface member implementation. Thus, in the following class

class Shape: ICloneable

object ICloneable.Clone() {---%}
int IComparable.CompareTo(object other) {...%}

the declaration of 1Comparable.CompareTo isinvalid because 1Comparable isnot listed in the base
classlig of Shape and is not a base interface of 1CIoneable. Likewisg, in the declarations

class Shape: ICloneable

object ICloneable.Clone() {--.%}

class Ellipse: Shape

object ICloneable.Clone() {--.}

the declaration of 1Cloneable.Clone in ElNlipse isin eror because 1CIoneable isnot explicitly
ligted in the base classlist of E11ipse.

The fully qualified name of an interface member must reference the interface in which the member was
declared. Thus, in the declarations

interface IControl

{
void Paint(Q);

3

interface ITextBox: IControl

{
void SetText(string text);
}

class TextBox: 1TextBox

t void IControl.Paint() {---}

void ITextBox.SetText(string text) {...}

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

the explicit interface member implementation of Paint must be written as 1Control .Paint.

13.4.2 Interface mapping

A class or struct must provide implementations of all members of the interfaces that are listed in the base
classlist of the class or struct. The process of locating implementations of interface membersin an
implementing class or struct is known as interface mapping.

Interface mapping for a class or struct C locates an implementation for each member of each interface
specified in the base class list of C. The implementation of a particular interface member 1 .M, where 1 is
the interface in which the member M is declared, is determined by examining each class or struct S, starting
with C and repeating for each successive base class of C, until amatch is located:

If S contains a declaration of an explicit interface member implementation that matches 1 and M, then
this member is the implementation of 1._M.

Otherwisg, if S contains adeclaration of a non-static public member that matches M, then this member is
the implementation of 1 .M.

An error occurs if implementations cannot be located for all members of al interfaces specified in the base
classlist of C. Note that the members of an interface include those members that are inherited from base
interfaces.

For purposes of interface mapping, a class member A matches an interface member B when:
A and B are methods, and the name, type, and forma parameter lists of A and B are identical.

A and B are properties, the name and type of A and B areidentical, and A has the same accessors asB (A
is permitted to have additiona accessorsif it is not an explicit interface member implementation).

A and B are events, and the name and type of A and B areidentical.

A and B are indexers, the type and formal parameter lists of A and B areidentical, and A has the same
accessors asB (A is permitted to have additiona accessorsiif it is not an explicit interface member
implementation).

Notable implications of the interface mapping algorithm are;

Explicit interface member implementations take precedence over other members in the same class or
struct when determining the class or struct member that implements an interface member.

Private, protected, and static members do not participate in interface mapping.
In the example

interface ICloneable

object Clone();

class C: ICloneable

object ICloneable.Clone() {---}

public object Clone() {}
}

the ICloneable.Clone member of C becomes the implementation of Clone in 1Cloneable because
explicit interface member implementations take precedence over other members.

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 229

C# LANGUAGE REFERENCE

230

If aclass or struct implements two or more interfaces containing a member with the same nane, type, and
parameter types, it is possible to map each of those interface members onto a single class or struct member.

For example
Enterface IControl
void Paint();

b

nterface IForm

i

t
void Paint(Q);

}

class Page: IControl, IForm

public void Paint(Q {...}

Here, the Paint methods of both 1Control and IForm are mapped onto the Paint method in Page. Itis
of course also possible to have separate explicit interface member implementations for the two methods.

If aclass or struct implements an interface that contains hidden members, then some members must
necessarily be implemented through explicit interface member implementations. For example

interface IBase

int P { get; }

interface IDerived: IBase

new int PQ;

An implementation of this interface would reguire at least one explicit interface member implementation,
and would take one of the following forms

class C: IDerived

int IBase.P { get {...} }

int IDerived.PQOQ {.-.}
}

class C: IDerived

public int P { get {...} }

int IDerived.PQ {.--}
}

class C: IDerived

int IBase.P { get {...} }
public int PO {.--}

When a class implements multiple interfaces that have the same base interface, there can be only one
implementation of the base interface. In the example

interface IControl

void Paint();
}

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

nterface 1TextBox: IControl

i
{
3 void SetText(string text);

nterface IListBox: I1Control

void Setltems(string[] items);

lass ComboBox: IControl, ITextBox, IListBox

i
{
}
c
{

void IControl.Paint() {---}
void ITextBox.SetText(string text) {...}

void IListBox.Setltems(string[] items) {...}
}

it is not possible to have separate implementations for the 1Control named in the base classlist, the
IControl inherited by 1TextBox, and the 1Control inherited by IListBox. Indeed, there is no notion
of a separate identity for these interfaces. Rather, the implementations of 1TextBox and IListBox share
the same implementation of 1Control, and ComboBox is simply considered to implement three interfaces,
IControl, ITextBox, and IListBox.

The members of abas class participate in interface mapping. In the example
interface Interfacel

void FQ;

class Classl

public void FO {}
public void GQ {}

class Class2: Classl, Interfacel

new public void GQ {}
}

the method F in Class1 isused in Class2's implementation of Interfacel.

13.4.3 Interface implementation inheritance
A class inherits all interface implementations provided by its base classes.

Without explicitly re-implementing an interface, a derived class cannot in any way dter the interface
mappings it inherits from its base classes. For example, in the declarations

interface IControl

void Paint(Q);

class Control: I1Control

public void Paint() {...}

class TextBox: Control

new public void Paint() {...}

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 231

C# LANGUAGE REFERENCE

the Paint method in TextBox hides the Paint methodin Control, but it does not ater the mapping of
Control .Paintonto IControl _Paint, and calsto Paint through class instances and interface
instances will have the following effects

Control c = new Control();

TextBox t = new TextBox();

IControl ic = c;

IControl it = t;

c.Paint(Q); // invokes Control.Paint();
t.Paint(); // invokes TextBox.Paint();
ic.Paint(); // invokes Control.Paint();
it.Paint(); // invokes Control.Paint();

However, when an interface method is mapped onto a virtual method in aclass, it is possible for derived
classes to override the virtual method and alter the implementation of the interface. For example, rewriting
the declarations above to

interface IControl

void Paint(Q);
}

class Control: IControl

public virtual void Paint(Q) {...}
}

class TextBox: Control

public override void Paint() {.-..}

the following effects will now be observed

Control c = new Control();

TextBox t = new TextBox();

IControl ic = c;

IControl it = t;

c.Paint(Q; // invokes Control.Paint();
t.Paint(); // invokes TextBox.Paint();
ic.Paint(Q); // invokes Control.Paint();
it.Paint(); // invokes TextBox.Paint();

Since explicit interface member implementations cannot be declared virtual, it is not possible to override an
explicit interface member implementation. It is however perfectly valid for an explicit interface member
implementation to call another method, and that other method can be declared virtual to allow derived
classes to override it. For example

interface IControl

void Paint();
¥

class Control: IControl

void IControl.Paint() { PaintControl(); }
protected virtual void PaintControl() {...}

class TextBox: Control

protected override void PaintControl() {.-.}

}

232 Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

Here, classes derived from Control can speciaize the implemertation of 1Control .Paint by
overriding the PaintControl method.

13.4.4 Interface re-implementation

A class that inherits an interface implementation is permitted to re-implement the interface by including it
inthe base classlit.

A re-implementation of an interface follows exactly the same interface mapping rules as an initia
implementation of an interface. Thus, the inherited interface mapping has no effect whatsoever on the
interface mapping established for the re-implementation of the interface. For example, in the declarations

interface IControl

void Paint();
}

class Control: IControl

void IControl.Paint() {---}
}

class MyControl: Control, IControl

public void Paint(Q) {}
}

the fact that Control maps 1Control .Paint onto Control . IControl .Paint doesn't affect there-
implementation in MyControl, which maps 1Control .Paint onto MyControl .Paint.

Inherited public member declarations and inherited explicit interface member declarations participate in the
interface mapping process for re-implemented interfaces. For example

interface IMethods

void FQ);
void G(Q);
void HQ;
3 void 1Q;

class Base: IMethods

void IMethods.FQ {}
void IMethods.GQ {}
public void HO {}
public void 1) {}

3
class Derived: Base, IMethods

public void FQ {}
void IMethods.HQ {}

}

Here, the implementation of IMethods in Derived maps the interface methods onto Derived.F,
Base. IMethods .G, Derived. IMethods.H, and Base.I.

When aclass implements an interface, it implicitly also implements all of the interface’s base interfaces
Likewise, are-implementation of an interface is aso implicitly a re-implementation of al of the interface's
base interfaces. For example

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 233

C# LANGUAGE REFERENCE

234

nterface IBase

i

{
void FQ;

}

nterface IDerived: IBase

void GQ;

i
{
}
%Iass C: IDerived

void IBase.FQ {...}

void IDerived.GQ {---}
}

class D: C, IDerived
public void FO {...}
public void GO {...}

Here, the reimplementation of 1Derived aso reimplements 1Base, mapping 1Base.F onto D.F.

13.4.5 Abstract classes and interfaces

Like a non-abstract class, an abstract class must provide implementations of al members of the interfaces
that are listed in the base class list of the class. However, an abstract class is permitted to map interface
methods onto abstract methods. For example

interface IMethods

void FQ;
void GQ;
}

abstract class C: IMethods

public abstract void FQ);
public abstract void G();

}

Here, the implementation of IMethods maps F and G onto abstract methods, which must be overridden in
non-abstract classes that derive from C.

Note that explicit interface member implementations cannot be abstract, but explicit interface member
implementations are of course permitted to call abstract methods. For example

interface IMethods

void FQ);
void GQ);

abstract class C: IMethods

void IExample.FQ { FFQ:; }
void IExample.GQ { GGQ; }
protected abstract void FF(Q);

protected abstract void GG();
}

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

Here, non-abstract classes that derive from C would be required to override FF and GG, thus providing the
actual implementation of IMethods.

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 235

Chapter

14. Enums

An enum type is a distinct type with named constants. Enum declarations may appear in the same places
that class declarations can occur.

The example
using System;
enum Color

Red,
Green,
Blue

declares an enum type named Color with members Red, Green, and Blue.

14.1 Enum declarations

An enum declaration declares a new enum type. An enum declaration begins with the keyword enum, and
defines the name, accessibility, underlying type, and members of the enum.

enum-declaration:
attributes,y enummodifiers,y enum identifier enumbase, enumbody ;o

enummodifiers:
enum-modifier
enum-modifiers enummodifier

enummodifier:
new
public
protected
internal
private

enum-base;
integral-type

enum-body:
{ enummember-declarationsyy 3}
{ enummenber-declarations , }

Each enum type has a corresponding integral type caled the underlying typeof the enum type. This
underlying type can represent all the enumerator values defined in the enumeration. An enum declaration
may explicitly declare an underlying type of byte, sbyte, short, ushort, int, uint, long or ulong.
Note that char cannot be used as an underlying type. An enum declaration that does not explicitly declare
an underlying type has an underlying type of int.

The example

enum Color: long

Red,
Green,
Blue

}

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 237

C# LANGUAGE REFERENCE

238

declares an enum with an underlying type of long. A developer might choose to use an underlying type of
long, asin the example, to enable the use of values that are in the range of 1ong but not in the range of
int, or to preserve this option for the future.

14.2 Enum members

The body of an enum type declaration defines zero or more enum members, which are the named constants
of the enum type. No two enum members can have the same name. An enum declaration can not contain
declarations of methods, properties, events, operators, or types.

enummember -declarations;
enum-member -declaration

enummember-declarations , enummember -declaration
enummember-declaration:
attributes,, identifier
attributes,, identifier = constant-expression
Each enum member has an associated constant value. The type of this value is the underlying type for the

containing enum. The constant value for each enum member must be in the range of the underlying type for
the enum. The example

enum Color: uint

Red = -1

Green = -2,

Blue = -3
3

isin error because the constant values -1, -2, and —3 are not in the range of the underlying integra type
uint.

Multiple enum members may share the same associated value. The example

enum Color

Red,
Green,
Blue,

Max = Blue,

}
shows an enum that has two enum members — Bl ue and Max — that have the same associated value.

The associated vaue of an enum member is assigned either implicitly or explicitly. If the declaration of the
enum member has a constant-expression initiaizer, the value of that constant expression, implicitly
converted to the underlying type of the enum, is the associated value of the enum member. If the
declaration of the enum member has no initializer, its associated value is set implicitly, asfollows:

If the enum member is the first enum member declared in the enum type, its associated value is zero.

Otherwise, the associated value of the enum member is obtained by increasing the associated value of
the previous enum member by one. This increased value must be within the range of values that can be
represented by the underlying type.

The example

using System;

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

enum Color

{
Red,
Green = 10,
Blue

}

class Test

static void Main() {
Console._WriteLine(StringFromColor(Color.Red));
Console.WriteLine(StringFromColor(Color.Green));
Console._WriteLine(StringFromColor(Color.Blue));

static string StringFromColor(Color c) {
switch (c) {
case Color.Red:
return String.Format("'Red = {0}", (int) c);

case Color.Green:
return String.Format(*Green = {0}, (int) c);

case Color.Blue:
return String.Format("'Blue = {0}, (int) c);

default:
return "Invalid color™;

}
}
}

prints out the enum member names and their associated values. The output is.

Red = 0
Blue = 10
Green = 11

for the following reasons:

the enum member Red is automatically assigned the value zero (since it has no initializer and is the first
enum member);

the enum member B lue is explicitly given the value 10;

and the enum member Green is automatically assigned the value one greater than the member that
textually precedesit.

The associated value of an enum member may not, directly or indirectly, use the value of its own associated
enum member. Other than this circularity restriction, enum member initializers may freely refer to other
enum member initializers, regardless of their textual position. Within an enum member initiaizer, values of
other enum members are always treated as having the type of their underlying type, so that casts are not
necessary when referring to other enum members.

The example

enum Circular

{
A =B
B

}

isinvalid because the declarations of A and B are circular. A depends on B explicitly, and B depends on A
implicitly.

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 239

C# LANGUAGE REFERENCE

240

Enum members are named and scoped in a manner exactly analogous to fields within classes. The scope of
an enum member is the body of its containing enum type. Within that scope, enum members can be referred
to by their smple name. From all other code, the name of an enum member must be qualified with the

name of its enum type. Enum members do not have any declared accessibility—an enum member is
accessible if its containing enum type is accessible.

14.3 Enum values and operations

Each enum type defines a distinct type; an explicit enumeration conversion (86.2.2) is required to convert
between an enum type and an integral type, or between two enum types. The set of valuesthat an enum
type can take on is not limited by its enum members. In particular, any value of the underlying type of an

enum can be cast to the enum type, and is a distinct valid value of that enum type.

Enum members have the type of their containing enum type (except within other enum member initializers.
see 814.2). The value of an enum member declared in enum type E with associated value v is (E)v.

The following operators can be used on values of enum types. ==, 1=, <, >, <=, >=(§7.9.5),
+(87.7.4),- (87.7.5," &, (87.10.2, ~ (87.6.4), ++,-- (87.5.9 87.6.7), sizeof (§7.5.12).

Every enum type automatically derives from the class System. Enum. Thus, inherited methods and
properties of this class can be used on values of an enum type.

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

15. Delegates

15.1 Delegate declarations

delegate-declaration:
attributes,,, delegate-modifiers,, delegate result-type identifier (formal-parameter -

listopt)

15.1.1 Delegate modifiers
delegate-modifiers:

delegate-modifier

ddegate-modifiers delegate-modifier

delegate-modifier:
new
public
protected
internal
private

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 241

Chapter

16. Exceptions

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 243

Chapter

17. Attributes

Much of the C# language enables the programmer to specify declarative information about the entities
defined in the program. For example, the accessibility of amethod in a class is specified by decorating it
with the method-modifiers public, protected, internal, and private.

C# enables programmersto invent new kinds of declarative information, to specify declarative information
for various program entities, and to retrieve attribute information in a run-time environment. For instance, a
framework might define aHe lpAttribute atribute that can be placed on program elements such as
classes and methods to provide a mapping from program el ements to documentation for them.

New kinds of declarative information are defined through the declaration of attribute classes (817.1), which
may have positional and named parameters (817.1.2). Declarative information is specified a C# program
using attributes (817.2), and can be retrieved at run-time as attribute instances (8§ 17.3).

17.1 Attribute classes

The declaration of an attribute class defines a new kind of attribute that can be placed on adeclaration. A
class that derives from the abstract class System.Attribute, whether directly or indirectly, is an attribute
class.

A declaration of an attribute class is subject to the following additional restrictions:
A non-abstract attribute class must have public accessibility.
All of the typesin which a non-abstract attribute classis nested must have public accessbility.
A non-abstract attribute class must have at |east one public constructor.

Each of the formal parameter types for each of the public constructors of an attribute class must be an
attribute parameter type (§17.1.3).

By convention, attribute classes are named with a suffix of Attribute. Uses of an attribute may either
include or omit this suffix.

17.1.1 The AttributeUsage attribute
The AttributeUsage attribute is used to describe how an attribute class can be used.

The AttributeUsage attribute has a positional parameter named that enables an attribute class to specify
the kinds of declarations on which it can be used. The example

[AttributeUsage(AttributeTargets.Class | AttributeTargets. Interface)]
F{)ijblic class SimpleAttribute: System.Attribute

defines an attribute class named SimpleAttribute that can be placed on class-declarations and
interface-declarations. The example

[Simple] class Classl {.}
[Simple] interface Interfacel {.}

shows several uses of the Simple attribute. The atribute is defined with a class named
SimpleAttribute, but uses of this attribute may omit the Attribute suffix, thus shortening the nameto
Simple. The example above is semantically equivalent to the example

[SimpleAttribute] class Classl {.}

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 245

C# LANGUAGE REFERENCE

246

[SimpleAttribute] interface Interfacel {.}

The AttributeUsage attribute hasan Al lowMul tiple named parameter that specifies whether the
indicated attribute can be specified more than once for a given entity. An attribute that can be specified
more than once on an entity is caled a multi-use attribute class. An attribute that can be specified at most
once on an entity is called a single-use attribute class.

The example

[AttributeUsage(AttributeTargets.Class, AllowMultiple = true)]
public class AuthorAttribute: System.Attribute {
public AuthorAttribute(string value);

public string Value { get {.} }

defines a multi-use attribute class named AuthorAttribute. The example

[Author('Brian Kernighan'), Author(*'Dennis Ritchie™)]
class Classl {.}

shows aclass declaration with two uses of the Author attribute.

17.1.2 Positional and named parameters

Attribute classes can have positional parametersand named parameters. Each public constructor for an
atribute class defines a valid sequence of positional parameters for the attribute class. Each non-static
public readwrite field and property for an attribute class defines a named parameter for the attribute class.

The example

[AttributeUsage(AttributeTargets.Class]
public class HelpAttribute: System_Attribute

{
public HelpAttribute(string url) { // url is a positional parameter
}
public ?tring Topic { // Topic is a named parameter
get {...
set {...}
public string Url { get {.} }
}

defines an attribute class named He lpAttribute that has one positiona parameter (string url)and
one named argument (string Topic). The readonly Url property does not define a named parameter. It
is nontstatic and public, but sinceit is read-only it does not define a named parameter.

The example
[HelpAttribute('http://www.mycompany.com/../Classl._htm')]
class Classl {

[HelpAttribute("http://www.mycompany.com/../Misc.htm"™, Topic ="Class2")]
class Class2 {

}
shows severa uses of the attribute.

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

17.1.3 Attribute parameter types

The types of positional and named parameters for an attribute class are limited to the attribute parameter
types. A typeisan atribute type if it is one of the following:

One of thefollowing types: bool, byte, char, double, float, int, long, short, string.
Thetype object.
The type System. Type.

An enum type provided that it has public accessibility and that the types in which it is nested (if any)
aso have public accessibility.

An attribute class that defines a positional or named parameter whose type is not an attribute parameter
typeisin error. The example

public class InvalidAttribute: System_Attribute

public InvalidAttribute(Classl c) {.} // error

public class Classl {

}

isin error because it defines an attribute class with a positional parameter of typeClassi, whichisnot an
attribute parameter type.

17.2 Attribute specification

An attribute is apiece of additional declarative information that is specified for a declaration. Attributes
can be specified for type-declarations, class-member-declarations, interface-member -declarations, enum

member-declarations, property -accessor-declarations and for mal-parameter declarations.

Attributes are specified in attribute sections. Each attribute section is surrounded in square brackets, with
multiple attributes specified in a comma-separated lists. The order in which attributes are specified, and the
manner in which they are arranged in sections is not significant. The attribute specifications [A][B],
[B1[A].[A, B],and [B, A] areequivaent.

attributes:
attribute-sections

attribute-sections:
attribute-section
attribute-sections attribute-section

attribute-section:
[attribute-list]
[attributelist]

attribute-list;
attribute
attribute-list , attribute

attribute;
attribute-name attribute-arguments,

attribute-name:
reserved-attribute-name
type-name

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 247

C# LANGUAGE REFERENCE

attribute-arguments:

(positional-argument-list)

(positional-argument-list , named-argument-list)

(named-argument-list)
positional-argument-list:

positional-argument

positional-argument-li , positional-argument
positional-argument:

attribute-argument-expression
named-argumentist:

named-argument

named-argument-list , named-argument

named-argument:

identifier = attribute-argument-expression
attribute-argument-expression:

expression

An attribute consists of an attribute-name and an optiona list of positional and named arguments. The
positional arguments (if any) precede the named arguments. A positional argument consists of an attribute-
argument-expression; a named argument consists of a name, followed by an equal sign, followed by an
attribute-argument-expression.

The attribute-name identifies either a reserved attribute or an attribute class. If the form of attribute -name
istype-name then this name must refer to an attribute class. Otherwise, a compile-time error occurs. The
example

class Classl {}

[Classl] class Class2 {3 // Error

isin error because it attempts to use Class1, which is not an attribute class, as an attribute class.
It is an error to use a single-use attribute class more than once on the same entity. The example

[AttributeUsage(AttributeTargets.Class)]
public class HelpStringAttribute: System.Attribute

string value;

public HelpStringAttribute(string value) {
this.value = value;
}

public string Value { get {.} }
}

[HelpString(''Description of Classl™)]
[HelpString("'Another description of Classl™)]
public class Classl {}

isin error because it attempts to use He I pString, which is a Sngle-use attribute class, more than once on
the declaration of Class1.

An expression E is an attribute-argument-expression if all of the following statements are true;
Thetype of E is an attribute parameter type (817.1.3.
At compile-time, the vaue of E can be resolved to one of the following:

248 Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

A constant value.
A System.Type object.
A one-dimensiona array of attribute-argument-expressions.

17.3 Attribute instances

An attribute instanceis an instance that represents an attribute at run-time. An attribute is defined with an
attribute, positional arguments, and named arguments. An attribute instance is aninstance of the attribute

classthat isinitialized with the positional and named arguments.

Retrieva of an attribute instance involves both compile-time and run-time processing, as described in the
following sections.

17.3.1 Compilation of an attribute

The compilation of an attribute with attribute class T, positional-argument-list P and named-argument-list
N, consists of the following steps.

Follow the compile-time processing steps for compiling an object-creation-expression of the form new
T(P). These steps either result in a compile-time error, or determine a constructor on T that can be
invoked at run-time. Call this constructor C.

If the constructor determined in the step above does not have public accessibility, then a compile-time
Error occurs.

For each named-argument Arg inN:
Let Name bethe identifier of the named-argument Arg.

Name must identify a non-static read-write public field or property on T. If T hasno such field or
property, then a compile-time error occurs.

Keep the following information for run-time instantiation of the attribute instance: the attribute class T,
the constructor C on T, the positional-argument-list P and thenamed-argument-list N.

17.3.2 Run-time retrieval of an attribute instance

Compilation of an attribute yields an atribute class T, congtructor C on T, positional-argument-ligt P and
named-argumentlist N. Given this information, an attribute instance can be retrieved at run-time using the

following steps:

Follow the run-time processing steps for executing an object-creation-expression of the form T(P),
using the constructor C as determined at compile-time. These steps either result in an exception, or
produce an instance of T. Call this instance O.

For each named-argument Arg in N, in order:

Let Name bethe identifier of the named-argument Arg. If Name does not identify a non-static public
read-write field or property on 0, then an exception (TODO: which exception?) is thrown.

Let Value be the result of evauating the attribute-argument-expression of Arg.
If Name identifies afield on O, then set this field to the value value.
Otherwise, Name identifies a property on 0. Set this property to the valuevalue.

The result is 0, an instance of the attribute class T that has been initialized with the positional-argument-
list P and the named-argument-list N.

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 249

C# LANGUAGE REFERENCE

17.4 Reserved attributes
A small number of attributes affect the language in some way. These attributes include:

System.AttributeUsageAttribute, which is used to describe the ways in which an attribute class

can be used.
System.ConditionalAttribute, which is used to define conditional methods.

System.ObsoleteAttribute, which is used to mark a member as obsolete.

17.4.1 The AttributeUsage attribute
The AttributeUsage attribute is used to describe the manner in which the attribute class can be used.

A classthat is decorated with the AttributeUsage attribute must derive from System.Attribute,
either directly or indirectly. Otherwise, a compile-time error occurs.

[AttributeUsage(AttributeTargets.Class)]
public class AttributeUsageAttribute: System.Attribute

{

public AttributeUsageAttribute(AttributeTargets validon) {.}

public AttributeUsageAttribute(AttributeTargets validOn,

bool allowMultiple,
bool inherited) {.}

public bool AllowMultiple { virtual get {.} virtual set {.} }

public bool Inherited { virtual get {.} virtual set {.} }

public AttributeTargets ValidOn { virtual get {.} }
}
public enum AttributeTargets
{

Assembly = 0x0001,

Module = 0x0002,

Class = 0x0004,

Struct = 0x0008,

Enum = 0x0010,

Constructor = 0x0020,

Method = 0x0040,

Property = 0x0080,

Field = 0x0100,

Event = 0x0200,

Interface = 0x0400,

Parameter = 0x0800,

Delegate = 0x1000,

All = Assembly | Module | Class | Struct | Enum | Constructor |
Method | Property | Field | Event | Interface | Parameter |
Delegate,

ClassMembers = Class | Struct | Enum | Constructor | Method |

3 Property | Field | Event | Delegate | Interface,

17.4.2 The Conditional attribute

The Conditional attribute enables the definition of conditional methods The Conditional attribute
indicates a condition in the form of a pre-processing identifier. Calls to a conditional method are either
included or omitted depending on whether this symbal is defined at the point of the call. If the symbol is
defined, then the method call isincluded if the symbol is undefined, then the call is omitted.

250

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

[AttributeUsage(AttributeTargets.Method, AllowMultiple = true)]
public class ConditionalAttribute: System._Attribute

public ConditionalAttribute(string conditionalSymbol) {.}
public string ConditionalSymbol { get {.} }

A conditional method is subject to the following restrictions:

The conditional method must be a method in a class-declaration. A compile-time error occurs if the
Conditional attributeis specified on an interface method.

The conditional method must return have areturn type of void.

The conditional method must not be marked with the override modifier. A conditional method may
be marked with the vi rtual modifier. Overrides of such amethod are implicitly conditional, and must
not be explicitly marked with a Conditional attribute.

The conditiona method must not be an implementation of an interface method. Otherwise, a compile-
time error occurs.

Also, acompile-time error occurs if a conditional method is used in a delegate-creation-expression. The
example

#define DEBUG

class Classl

{
[Conditional (""DEBUG™)]
public static void MO {
Console_WriteLine("'Executed Classl.M");
}

}

class Class2

public static void Test() {
Classl.MQ;
}

}

declares Class1.M asaconditiona method. Class2's Test method calls this method. Since the pre-
processing symbol DEBUG is defined, if Class2.Test iscaled, it will call m. If the symbol DEBUG had not
been defined, then Class2 . Test would not call Class1 .M.

It isimportant to note that the inclusion or exclusion of a call to a conditional method is controlled by the
pre-processing identifiers at the point of the call. In the example

// Begin classl.cs

class Classl

[Conditional (""DEBUG™)]

public static void FQ {
Console._WriteLine("Executed Classl.F");

}

H
// End classl.cs

// Begin class2.cs
#define DEBUG

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 251

C# LANGUAGE REFERENCE

252

class Class2

{

public static void G {
Classl.FQ; // F is called

b
// End class2.cs

// Begin class3.cs
#undet DEBUG
class Class3

public static void H {
Classl.FQ; // F is not called

b
// End class3.cs

the classesClass2 and Class3 each contain calls to the conditional method Class1.F, whichis
conditional based on the presence or absence of DEBUG. Since this symbol is defined in the context of
Class2 but not Class3, thecdl to F in Class2 isactudly made, whilethecall to Fin Class3 is omitted.

The use of conditional methods in an inheritance chain can be confusing. Calls made to a conditional
method through base, of theform base .M, are subject to the normal conditional method call rules. In the
example

class Classl

[Conditional (""DEBUG™)]

public virtual void MO {
Console._WriteLine('Classl.M executed');

b

}

class Class2: Classl

public override void MO {
Console._WriteLine("Class2.M executed™);
base.MQ; // base.M 1s not called!

}

#define DEBUG
class Class3

public static void Test() {

Class2 ¢ = new Class2();
c.MQO; // M is called

}

Class?2 includes acal them defined in its base class. This call is omitted because the base method is
conditional based on the presence of the symbol DEBUG, which is undefined. Thus, the method writes to the
console only "Class2.M executed". Judicious use of pp-declaratiors can eliminate such problems.

17.4.3 The Obsolete attribute
The Obsolete dtribute is used to mark program elements that should no longer be used.

Copyright O Microsoft Corporation 19992000. All Rights Reserved.

Chapter

[AttributeUsage(AttributeTargets.All)]
public class ObsoleteAttribute: System._Attribute

{
public ObsoleteAttribute(string message) {.}

public string Message { get {.} }
public bool IsError{ get {.} set {.} }

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 253

Chapter

18. Versioning

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 255

Chapter

19. Unsafe code

19.1 Unsafe code

19.2 Pointer types

pointer -type:
unmanaged-type *
void *

unmanaged-type:
value-type

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 257

Chapter

20. Interoperability

20.1 Attributes

The attributes described in this chapter are used for creating .NET programs that interoperate with
COM programs.

20.1.1 The comImport attribute

When placed on a class, the COMImport attribute marks the class as an externally implemented COM
class. Such a class declaration enables the use of a C# nameto refer to a COM class.

[AttributeUsage(AttributeTargets.Class)]
public class COMImportAttribute: System.Attribute

public COMImportAttribute() {.}

A class that is decorated with the COMImport attribute is subject to the following restrictions:

It must also be decorated with the Guid attribute, which specifies the CLSID for the COM class
being imported. A compile-time error occurs if a class declaration includes the COMImport
attribute but fails to include the Guid attribute.

It must not have any members. (A public constructor with no parameters is automatically provided.)

It must not derive from a class other than object.

The example

[COMImport, Guid(''00020810-0000-0000-C000-000000000046'")]
class Worksheet {}

class Test

static void Main(Q) {
Worksheet w = new Worksheet(); // Creates an Excel worksheet

}
}

declares a class Worksheet as a class imported from COM that has a CLSID of "00020810-0000-
0000-C000-000000000046". Instantiating a Worksheet instance causes a corresponding COM
ingtantiation.

20.1.2 The coMSourcelnterfaces attribute
The COMSource Interfaces attribute is used to list the source interfaces on the imported coclass.

[AttributeUsage(AttributeTargets.Class)]
public class ComSourcelnterfacesAttribute: System.Attribute

public ComSourcelnterfacesAttribute(string value) {.}
public string Value { get {.} }

20.1.3 The comvisibility attribute
The coMVisibi lity attribute is used to specify whether or not a class or interface is visible in COM.

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 259

C# LANGUAGE REFERENCE

[AttributeUsage(AttributeTargets.Class | AttributeTargets. Interface)]
public class COMVisibilityAttribute: System_Attribute

public COMVisibilityAttribute(System.Interop.ComVisibility value) {.}

public ComVisibilityAttribute Value { get {.} }
}

20.1.4 The Displd attribute
TheDispld attribute is used to specify an OLE Automation DISPID. (A DISPID is an integra value
that identifies a member in a dispinterface.)

[AttributeUsage(AttributeTargets.Method | AttributeTargets.Field |
AttributeTargets.Property)]
public class DispldAttribute: System.Attribute

public DispldAttribute(int value) {.}

public int Value { get {.} }
}

20.1.5 The DIl Import attribute

The DIl Import attribute is used to specify the dll location that contains the implementation of an
extern method.

[AttributeUsage(AttributeTargets._.Method)]
public class DIlImportAttribute: System._Attribute

{
public DIlImportAttribute(string dlIName) {.}

public CallingConvention CallingConvention;
public CharSet CharSet;

public string DIIName { get {.} }

public string EntryPoint;

public bool ExactSpelling;

public bool SetLastError;

}
Specifically, the D11 Import attribute has the following behaviors:

It can only be placed on method declarations.

It has asingle positional parameter: adl IName parameter that specifies name of the dil in which the
imported method can be found.

It has four named parameters:

The Cal lingConvention parameter indicates the calling convention for the entry point. If no
CallingConvention is specified, adefault of Cal lingConvention.WinAPI isused.

The CharSet parameter indicates the character set used in the entry point. If no CharSet is
specified, adefault of CharSet.Auto is used.

The EntryPoint parameter gives the name of the entry point in the dll. If no EntryPoint is
specified, then the name of the method itself is used.

The ExactSpel 1ing parameter indicates whether EntryPoint must exactly match the spelling of
the indicated entry point. If no ExactSpel ling is specified, adefault of false isused.

The SetLastError parameter indicates whether the method preserves the Win32 "last error”. If no
SetLastError is specified, adefault of false isused.

It isasingle-use attribute class.

260 Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter

In addition, a method that is decorated with the D11 Import attribute must have the extern modifier.

20.1.6 The GlobalObject attribute

The presence of the GlobalObject attribute specifiesthat aclassisa"global" or "gppobject” classin
COM.

[AttributeUsage(AttributeTargets.Class)]
public class GlobalObjectAttribute: System._Attribute

public GlobalObjectAttribute() {.}
}

20.1.7 The Guid attribute
The Guid attribute is used to specify a globally unique identifier (GUID) for aclass or an interface.
Thisinformation is primarily useful for interoperability between the .NET runtime and COM.

[AttributeUsage(AttributeTargets.Class

| AttributeTargets. Interface

| AttributeTargets.Enum

| AttributeTargets.Delegate

| AttributeTargets.Struct)]
public class GuidAttribute: System.Attribute

public GuidAttribute(string uuid) {.}

public Guid Value { get {.} }
}

The format of the positional string argument is verified at compile-time. It is an error to specify a string
argument that is not a syntactically valid GUID.

20.1.8 The HasDefaultinterface attribute
If present, the HasDefaul tInterface attribute indicates that a class has a default interface.

[AttributeUsage(AttributeTargets.Class)]
public class HasDefaultlnterfaceAttribute: System.Attribute

public HasDefaultlnterfaceAttribute() {.}
}
20.1.9 The ImportedFromCOM attribute
The ImportedFromCOM attribute is used to specify that a module was imported from a COM type
library.

[AttributeUsage(AttributeTargets._.Module)]
public class ImportedFromCOMAttribute: System_Attribute

public ImportedFromCOMAttribute(string value) {.}
public string Value { get {..} }

}

20.1.10 The In and out attributes

The In and Out attributes are used to provide custom marshalling information for parameters. All
combinations of these marshalling attributes are permitted.

[AttributeUsage(AttributeTargets.Parameter)]
public class InAttribute: System._Attribute

public InAttribute() {.}
}

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 261

C# LANGUAGE REFERENCE

[AttributeUsage(AttributeTargets.Parameter)]
public class OutAttribute: System.Attribute

public OutAttribute() {.}

If aparameter is not decorated with either marshalling attribute, then it is marshalled based on the its
parameter-modifiers, as follows. If the parameter has no modifiers then the marshalling is [In]. If the
parameter has the ref modifier then the marshaling is [In, Out]. If the parameter has the out
modifier then the marshaling is [Out].

Note that out isakeyword, and Out is an attribute. The example

class Classl
void M([Out] out int i) {

}
}

shows that the use of out as a parameter-modifier and the use of Out in an attribute.

20.1.11 The InterfaceType attribute

When placed on an interface, the InterfaceType attribute specifies the manner in which the interface
istreated in COM.

[AttributeUsage(AttributeTargets. Interface)]
public class InterfaceTypeAttribute: System_Attribute

public InterfaceTypeAttribute(System.Interop.ComIinterfaceType value)
{3
public System.Interop.ComlnterfaceType Value { get {.} }

20.1.12 The IsCOMRegisterFunction attribute

The presence of the 1sCOMRegisterFunction attribute on a method indicates that the method should
be called during the COM registration process.

[AttributeUsage(AttributeTargets.Method)]
public class IsCOMRegisterFunctionAttribute: System._Attribute

public IsComRegisterFunctionAttribute() {.}
}

20.1.13 The Marshal attribute
The Marshal attribute is used to describe the marshalling format for afield, method, or parameter.

[AttributeUsage(AttributeTargets.Method |
AttributeTargets.Parameter |
AttributeTargets.Field)]

public class MarshalAttribute: System._Attribute

{
public MarshalAttribute(UnmanagedType type) {.}

public string Cookie;

public Guid 11D;

public Type Marshaler;

public UnmanagedType NativeType { get {.} }
public int Size;

public UnmanagedType SubType;

262 Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter

The Marshal attribute has the following behaviors:
It can only be placed on field declarations, method declarations, and formal parameters.
It has asingle positional parameter of type UnmanagedType.
It has five named parameters.
The Cookie parameter gives a cookie that should be passed to the marshaler.
The 11D parameter givesthe Guid for NativeType. Interface types.
The Marshaler parameter specifies a marshaling class.

The Size parameter describes the size of afixed size array or string. (Issue: what value is returned
for other types?)

The SubType parameter describes the subsidiary type for NativeType.Ptr and
NativeType.FixedArray types.

It isasingle-use attribute class.

20.1.14 The Name attribute

The Name attribute is used to specify the property name that underlies an indexer in .NET. If no Name
atribute is specified, then the property is named 1tem.

[AttributeUsage(AttributeTargets. Indexer)]
public class NameAttribute: System.Attribute

public NameAttribute(string value) {.}
public string Value { get {.} }

}
The identifier must be alegal C# identifier. Otherwise, a compile-time error occurs.

20.1.15 The NolDispatch attribute

The presence of the NolDispatch attribute indicates that the class or interface should derive from
1Unknown rather than IDispatch when exported to COM.

[AttributeUsage(AttributeTargets.Class | AttributeTargets. Interface)]
public class NolDispatchAttribute: System_Attribute

public NolDispatchAttribute(Q {.}

20.1.16 The NonSerialized attribute

The presence of the NonSerialized attribute on afield or property indicates that that field or property
should not be serialized.

[AttributeUsage(AttributeTargets._Field | AttributeTargets.Property)]
public class NonSerializedAttribute: System._Attribute

public NonSerializedAttribute() {.}

20.1.17 The Predeclared attribute
The presence of the Predeclared attribute denotes a predeclared object imported from COM.

[AttributeUsage(Attribute(AttributeTargets.Class)]
public class PredeclaredAttribute: System_Attribute

public PredeclaredAttribute() {.}
}

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 263

C# LANGUAGE REFERENCE

264

20.1.18 The ReturnsHResul t attribute
The ReturnsHResul t dttribute is used to mark a method as returning an HRESULT result in COM .

[AttributeUsage(AttributeTargets._Method | AttributeTargets.Property)]
public class ReturnsHResultAttribute: System.Attribute

public ReturnsHResultAttribute(bool value) {.}

public bool VvValue { get {.} }
}

A method that is decorated with the ReturnsHResul t attribute must not have a body. Thus, the
ReturnsHResul t attribute may be placed on an interface method or on an extern class methods that
have the extern modifier. A compile-time error occurs if any other method declaration includes the
ReturnsHResult attribute.

The example

class interface Interfacel

[ReturnsHResult]
int M(int x, int y);
}

declares that the M method of Interfacel returns an HRESULT. The corresponding COM signature
for M isamethod that takes three arguments (the two int arguments x and y plus athird argument of
type int* that is used for the return value) and returns an HRESULT.

20.1.19 The Serializable attribute
The presence of the Serializable attribute on a classindicates that the class can be seridized..

[AttributeUsage(AttributeTargets.Class
| AttributeTargets.Delegate
| AttributeTargets.Enum
| AttributeTargets.Struct)]
public class SerializableAttribute: System._Attribute

public SerializableAttribute() {.}
}
20.1.20 The StructLayout attribute
The StructLayout attribute is used to specify the layout of fields for the struct.

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Struct)]
public class StructLayoutAttribute: System.Attribute

public StructLayoutAttribute(LayoutKind kind) {.}
public CharSet CharSet;
public int Pack;

public LayoutKind StructLayoutKind { get {.} }
¥

The StructLayout attribute has the following behaviors:
It can only be placed struct declarations.
It has apositional parameter of type Layout.
It has three named parameters:

The CharsSet named parameter indicates the default character set for containing char and string
types. The default isCharSet.Auto.

The Pack named parameter indicates the packing size, in bytes. The packing size must be a power
of two. The default packing sizeis 4.

Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter

It isasingle-use attribute class.

If LayoutKind.Explicit isspecified, then every field in the struct must have the StructOffset
atribute. If LayoutKind.Explicit isnot specified, then use of the StructOffset dtributeis
prohibited.

20.1.21 The StructOffset attribute
The StructOffset attribute is used to specify the layout of fields for the struct.

[AttributeUsage(AttributeTargets.Field)]
public class StructOffsetAttribute: System.Attribute

public StructOffsetAttribute(int offset) {.}
}

The StructOffset attribute may not be placed on a field declarations that is a member of a class.

20.1.22 The TypeL ibFunc attribute
The TypeLibFunc attribute is used to specify typelib flags, for interoperability with COM.

[AttributeUsage(AttributeTargets.Method)]
public class TypelLibFuncAttribute: System_Attribute
public TypeLibFuncAttribute(short value) {.}

public short Value { get {.} }

20.1.23 The TypeLibType attribute
The TypeLibType attribute is used to specify typdlib flags, for interoperability with COM.

[AttributeUsage(AttributeTargets.Class | AttributeTargets. Interface)]
public class TypeLibTypeAttribute: System.Attribute

public TypeLibTypeAttribute(short value) {.}

public short Value { get {.} }
}

20.1.24 The TypeLibVvar attribute
The TypeLibVar attribute is used to specify typelib flags, for interoperability with COM.

[AttributeUsage(AttributeTargets.Field)]
public class TypelLibVarAttribute: System.Attribute

public TypeLibVarAttribute(short value) {.}

public short Value { get {.} }
}

20.2 Supporting enums

namespace System.Interop {
public enum CallingConvention
{ WinAPI = 1,
Cdecl = 2,
Stdcall =
Thiscall
Fastcall

3,
41
5

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 265

C# LANGUAGE REFERENCE

266

public enum CharSet

}

public enum CominterfaceType

public enum COMVisibility

}

None
Auto,
Ansi,
Unicode

Dual = 0O,
IUnknown =
IDispatch =

VisibilityDefault
VisibilityOmitted

1

é,

public enum LayoutKind

}

public enum UnmanagedType

Sequential
Union,
Explicit,

R8

BStr

LPStr
LPWStr
LPTStr
ByvValTStr
Struct
Interface
SafeArray
ByValArray
Sysint
SysUlInt
VBByRefStr
AnsiBStr
TBStr
VariantBool
FunctionPtr
LPVoid
AsAny
RPrecise
LPArray
LPStruct

0ox2,
0x3,
0x4,
0x5,
0x6,
0x7,
0x8,
0x9,
Oxa,
Oxb,
oxc,
0x13,
0x14,
0x15,
0x16,
0ox17,
0Ox1b,
Oxlc,
0x1d,
Oxle,
ox1f,
0x20,
0x22,
0x23,
0x24,
0x25,
0x26,
0ox27,
0x28,
0x29,
0Ox2a,
0x2b,

CustomMarshaller =

t
0
1

0ox2c,

Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter

21. References

Unicode Consortium. The Unicode Sandard, Version 3.0. Addison-Wesley, Reading, Massachusetts, 2000,
ISBN 0-201-616335-5.

|IEEEE. IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Standard 754-1985. Available
from http://www.ieee.org.

ISO/IEC. C++. ANSI/ISO/IEC 14882:1998.

Copyright O Microsoft Corporation1999-2000. All Rights Reserved. 267

